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ABSTRACT
For the separation of the signals for multiple users in the vector
broadcast channel (BC), channel state information (CSI) is neces-
sary at the transmitter. Since the transmitter has no access to this
information in many cases, the CSI must be fed back from the re-
ceivers to the transmitter. Before the feedback, the receivers esti-
mate the CSI and apply a rank reduction possible due to the chan-
nel correlations. We propose a joint optimization of the estimation,
the rank reduction, and the codebook used for the feedback. In-
terestingly, the estimator and the rank reduction resulting from this
monolithic formulation are independent of the used codebook which
can be computed with the generalized Lloyd algorithm. Applying
the proposed feedback design to a system with multi-user precoding
based on CSI feedback shows the clear superiority of the optimized
codebook compared to previous designs.

Index Terms— Feedback systems, mean square methods,
transceivers, multi-user channel.

1. INTRODUCTION

For the transmission in the vector BC, the transmitter must have
some CSI knowledge, if the capabilities of the BC should be ex-
ploited better than with a TDMA scheme [1]. Unfortunately, the
transmitter cannot obtain this knowledge in many systems (such as
for frequency division duplex) and the CSI must be fed back from
the receivers to the transmitter.

Most papers on feedback for precoding concentrated on the
single-user case (see e.g., [2]). In [3], the impact of feedback on the
outage rate of a single-user MISO system was studied. The connec-
tion of the optimization of a single-user MIMO system with single
stream transmission to Grassmannian line packing was shown and
exploited in [4]. Spatial multiplexing in single-user MIMO was con-
sidered in [5] and the analysis of a single-user MIMO system for a
large number of transmit antennas was reported in [6]. The feedback
of unitary beamforming matrices was considered in [7].

For multi-user scenarios, mainly zero-forcing approaches have
been proposed. The rate of a vector BC system with random vector
quantization was investigated in [8], where it was shown that the
necessary number of bits is proportional to the SNR and the number
of transmit antennas. The feedback for a multi-user system with
zero-forcing dirty paper coding was proposed in [9]. In [10], the
sum rate performance of zero-forcing techniques for the vector BC
was analyzed, where also shape feedback was considered.
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action HA2006-0112), FEDER funds of the European Union (grant
numberTEC2004-06451-C05-01), and DAAD of Germany (integrated action
number D/06/12809).
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Fig. 1. Feedback with estimation and rank reduction

We propose a feedback design for correlated channels including
the estimation, the rank reduction, and the quantizer. The new for-
mulation is a considerable extension to that of [11], where we only
optimized the estimation and rank reduction. We obtain the very use-
ful result that the optimal estimator and rank reduction only depend
on the channel statistics and are independent of the used quantizer.
The distortion is a diagonally weighted squared error and thus, the
Lloyd algorithm can be employed to compute the quantizer. The fed
back CSI is employed to design a robust non-zero-forcing precoder,
i.e., robust minimum MSE (MMSE) precoder.

2. SYSTEMMODEL

For the sake of notational brevity, our formulation is without a user
index. TheNtr N -dimensional training symbols are transmitted over
the channel h ∈ C

N ∼ NC(0, Ch) and perturbed with some noise.
We collect the Ntr scalar outputs of the training channel in

x = Sh + η ∈ C
Ntr (1)

where S ∈ C
Ntr×N contains the training symbols and the noise is

η ∈ C
Ntr ∼ NC(0, Cη). The filter G ∈ C

d×Ntr performs estima-
tion and rank reduction in one step. The coefficients of the rank-
reduced representation are collected in

h̃ = G (Sh + η) ∈ C
d (2)

which is the input to the quantizer

Q(y) =
MX

i=1

yi Si(y) (3)

with M codebook entries yi, i = 1, . . . , M . The selector function
Si(y) is 1, if y ∈ Ri, and 0 else. The disjoint convex partition
cells Ri fulfill

SM
i=1 Ri = C

d, i.e., Q(y) is regular (e.g., [12]).
The output h̃Q = Q(h̃) is transmitted over the error-free feedback
channel. With the basis V ∈ C

N×d of the rank reduction, the CSI
at the transmitter reads as (see Fig. 1)

ĥQ = V Q(GSh + Gη) ∈ C
N . (4)
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3. MMSE BASED FEEDBACK DESIGN

Our goal is the joint optimization of the orthonormal basis V , the
equalizer G, the codebook entries yi, and the partition cells Ri,
i = 1, . . . , M, by minimizing the MSE ε = E[‖h − ĥQ‖2

2], i.e.,

{V , G, yi,Ri}opt = argmin
{V ,G,yi,Ri}

ε s.t.: V H
V = I. (5)

As we will see in the following, the main difficulty is the derivation
of V and G. The conditions for yi and Ri are standard. Note that
V V H �= I although V HV = I, since d < N .

3.1. Codebook Entries

Substituting (4) and the definition ofQ(•) into theMSE ε and setting
the derivative with respect to yi to zero yields

yi =
“
E

h
Si(h̃)

i”−1

V
H E

h
Si(h̃)h

i
(6)

which is the well known centroid condition (e.g., [12]). In (2), the
rank-reduced estimate h̃ can be found. Thus, the MSE is

ε = tr (Ch) −
MX

i=1

E[Si(h̃)hH]V V H E[Si(h̃)h]

E[Si(h̃)]
. (7)

The channel h and the noise η are Gaussian. Therefore, h and h̃ are
jointly Gaussian due to (2) and it is not difficult to find the mean of
h conditioned on h̃ (e.g., [13]):

E
h
h|h̃

i
= ChS

H
G

H
C

−1

h̃
h̃ (8)

where Ch̃ is the covariance matrix of h̃. With w ∼ NC(0, I) and
E[Si(h̃)h] = E[Si(h̃) E[h|h̃]], we obtain

E
h
Si(h̃)h

i
= ChS

H
G

H
C

−1/2

h̃
E

h
Si

“
C

1/2

h̃
w

”
w

i
.

Substituting this result into (7) yields for the MSE

ε = tr (Ch) − tr
“
V

H
ChS

H
G

H
C

−1/2

h̃
CQC

−1/2

h̃
GSChV

”

withCQ =
PM

i=1

E[Si(C
1/2

h̃
w)w] E[Si(C

1/2

h̃
w)wH]

E[Si(C
1/2

h̃
w)]

.

3.2. Estimator and Rank Reduction Basis

Due to [cf. (2)]

Ch̃ = G(SChS
H + Cη)GH

we get for the estimator

G = C
1/2

h̃
X

H
“
SChS

H + Cη

”−1/2

∈ C
d×Ntr . (9)

The unknownX ∈ C
Ntr×d has orthonormal columns. Let us define

A = ChSH(SChSH + Cη)−1/2 ∈ C
N×Ntr . We must solve

{Vopt, Xopt} = argmax
{V ,X}

tr
“
V

H
AXCQX

H
A

H
V

”
(10)

subject to V HV = I and XHX = I. From the derivative of the
Lagrangian function with respect toX , we conclude that

X
H
A

H
V V

H
AXCQ = CQX

H
A

H
V V

H
AX .

With the EVD CQ = UΞUH, it can be shown that
UHXHAHV V HAXU is diagonal, i.e., Ψ = QV HAXU is di-
agonal with some unitary Q ∈ C

d×d. In order to maximize the
resulting objective tr(ΞΨ 2), we must choose the i-th column of V
andW = XU to be the i-th dominant left and right singular vector
of A, respectively. Thus, Ψ has the d dominant singular values of
A on its diagonal. Note that we set Q = I, since the objective is
independent of Q. We see that the optimal basis Vopt contains the d
dominant eigenvectors of AAH. Interestingly, we obtained this re-
sult also for the case, where only V andG are optimized [11]. Note
that Vopt andWopt are fixed for given statistics Ch and Cη . There-
fore, the maximization (10) is solved by Xopt = WoptU

H, i.e., the
MSE minimized, where U is the modal matrix ofCQ.

Since Wopt contains the principal right singular vectors of A,
the estimator can be written as [cf. (9)]

Gopt = C
1/2

h̃
UΨ

−1
V

H
optGMMSE-estim ∈ C

d×Ntr . (11)

It can be seen that the conventional linear MMSE estimator

GMMSE-estim = ChS
H(SChS

H + Cη)−1 ∈ C
N×Ntr

is applied followed by the rank reduction with V H
opt. These two

stages constitute the solution of [11] for the estimator. However,
when the quantizer is included in the optimization as in (5), an ad-
ditional transformation withC

1/2

h̃
UΨ−1 is appended to ensure that

Ch̃ = Gopt(SChSH + Cη)GH
opt.

3.3. Partition Cells

The MSE is the average distortion, i.e.,

ε = E
h
‖h − ĥQ‖

2
2

i
= E

h
d

“
h̃, Q(h̃)

”i

with the distortion

d
“
h̃, Q(h̃)

”
= E

h
‖h − ĥQ‖

2
2|h̃

i
.

Incorporating (4) and (8) leads to

d
“
h̃, Q(h̃)

”
= c +

‚‚‚ChS
H
G

H
C

−1

h̃
h̃ − V Q(h̃)

‚‚‚
2

2

where c = tr(Ch − ChSHGHC−1

h̃
GSCh) is the trace of the

covariance matrix of h conditioned on h̃. Due to (11), we have
that ChSHGH

optC
−1

h̃
= VoptΨUHC

−1/2

h̃
. Hence, we get for the

distortion under the assumption thatGopt and Vopt are used

d
“
h̃, Q(h̃)

”
= c +

‚‚‚ΨU
H
C

−1/2

h̃
h̃ − Q(h̃)

‚‚‚
2

2
. (12)

The partition cells must be chosen to minimize d(h̃, Q(h̃)) for every
h̃, i.e., Ri = {x ∈ C

d|d(x,yi) ≤ d(x, yj),∀j}, which is the
nearest neighbor condition (e.g., [12]).

3.4. Suggested Codebook Design

The expression (12) for the distortion can be further simplified. Re-
call that Q(y) =

PM
i=1 yi Si(y). After incorporating (8) and (11),

the i-th codebook entry reads as [cf. (6)]

yi =
“
E

h
Si(h̃)

i”−1

ΨU
H
C

−1/2

h̃
E

h
Si(h̃)h̃

i
.
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Fig. 2. System with Linear Precoding

It is useful to redefine the quantizer as

Q(y) = Ψ Q′
“
U

H
C

−1/2

h̃
y

”
(13)

withQ′(y) =
PM

i=1 y′
i S′

i(y), S′
i(y) = Si(C

1/2

h̃
Uy), and

y
′
i = Ψ

−1
yi =

`
E

ˆ
S′

i (w)
˜´−1

E
ˆ
S′

i (w) w
˜
. (14)

As above, w ∼ NC(0, I). Then, we get for the distortion

d
“
C

1/2

h̃
Uh̆, Q(C

1/2

h̃
Uh̆)

”
= c +

‚‚‚Ψ
“
h̆ − Q′(h̆)

”‚‚‚
2

2
(15)

where h̆ = UHC
−1/2

h̃
h̃ ∈ C

d. Remember that Ψ is diagonal.
Thus, the distortion to be minimized for the design of Q′(•) has a
very simple structure. Additionally, h̆ ∼ NC(0, I) which leads to
the simple centroid condition in (14).

Note that we can concentrate on the design of Q′(•), because
Q(h̃) = Ψ Q′(h̆) with the output h̆ of

G
′
opt = Ψ

−1
V

H
optGMMSE-estim. (16)

The resulting CSI of the transmitter is VoptΨ Q′(G′
optx). Also note

thatG′
opt and Vopt only depend on the channel statistics. Hence, they

can be computed independently of the choice for Q′(•).
To summarize, we obtained from the joint optimization in (5)

that the received training symbols x are passed through the ordinary
MMSE estimatorGMMSE-estim, rank reduced with V H

opt, and weighted
with Ψ−1 to get uncorrelated unit-variance entries. Then, the index
� found by the quantizer Q′(•) is fed back and the CSI at the trans-
mitter is VoptΨy′

�. Note that A = ChSH(SChSH + Cη)−1/2

only depends on the channel statistics Ch and Cη that change very
slowly. Therefore, Vopt can be communicated to the transmitter with
negligible overhead (with the scheme of [7] for example) and we
assume a perfect knowledge of Vopt and Ψ at the transmitter.

Despite of the simplicity of (15), we suggest to restrict to sepa-
rate scalar quantization for every entry (also real and imaginary part
are split), i.e., the partition cells R′

i are hyperrectangles (transform
coding, e.g., [12]). With this restriction, the design of Q′(•) is in-
dependent of Ψ or any other quantity related to our system and the
scalar quantizer for any of the 2d real-valued scalars is the MMSE
optimal scalar quantizer for a real-valued Gaussian random variable
with variance 0.5. Due to this property, it is not necessary to compute
the parameters forQ′(•) in real-time. Instead, they can be computed
in advance (with the Lloyd algorithm, e.g., [12]) and stored. More-
over, the restriction to separate scalar quantization enables closed-
form expressions for the conditional moments for the precoder de-
sign (see next section).

4. ROBUST MULTI-USER PRECODER

We discuss the principle of employing the fed back CSI for precoder
design with the simple example of linear precoding as in Fig. 2 with
the data signal u ∈ C

K , its estimate û ∈ C
K , the linear precoder

F ∈ C
N×K , the noise n ∼ NC(0, Cn), and the common scalar

weight g used by all receivers (e.g., [14]). The vector channels
hk[ν] ∈ C

N , k = 1, . . . , K, for the K users are collected in the
channel matrix

H [ν] = [h1[ν], . . . , hK [ν]]T ∈ C
K×N

where ν denotes the index of the time slot.
The k-th receiver feeds back the index �k[ν] ∈ {1, . . . , M} to

the transmitter D slots before the transmitter uses this information
for precoding at time slot ν + D. For the sake of brevity, we set
l[ν] = [�1[ν], . . . , �K [ν]]T ∈ {1, . . . , M}K . To take into account
the CSI errors, the precoder is found by minimizing the mean of the
MSE εp = E[‖u − û‖2

2|H [ν + D]] conditioned on the indices l[ν]:

{Frob, grob} = argmin
{F ,g}

E [εp|l[ν]] s.t.: E
ˆ
‖F u‖2

2

˜
= Etx. (17)

The optimal precoder can be written as

Frob = g−1
rob

`
RH [ν+D]|l[ν] + ξI

´−1
Ĥ

H
Q (18)

with RH [ν+D]|l[ν] =
PK

k=1 R∗
hk[ν+D]|�k[ν], grob follows from

E[‖F u‖2
2] = Etx, ĤQ = [ĥQ,1, . . . , ĥQ,K ]T ∈ C

K×N , and
ξ = tr(Cn)/Etx. The necessary conditional moments are

ĥQ,k = E [hk[ν + D]|�k[ν]] = rkVopt,kΨky
′
�k [ν]

Rhk[ν+D]|�k[ν] = E
h
hk[ν + D]hH

k [ν + D]|�k[ν]
i

= ĥQ,kĥ
H
Q,k + Chk

− r2
kVopt,kΨ

2
kΥkV

H
opt,k

where rk is the temporal correlation (resulting from the Jakes model
for example). Note that the non-zero elements of the diagonal matrix
Υk ∈ R

d×d
0,+ only depend on the properties of Q′(•). Therefore, they

can be computed in advance and stored as the parameters of Q′(•).
Due to space limitations, we omit the expression for Υk that can
be found in closed form for the special case that Q′(•) performs
separate scalar quantization.

Note that the above mentioned solution for the scalar grob is only
used by the transmitter. Although not considered in the optimization
(17), every receiver performs an MMSE design of its scalar weight
[15]. The resulting weights will be different from gopt.

The design of other types of precoding, e.g., Tomlinson Ha-
rashima precoding (THP, e.g., [16, 11]), follows the same line, i.e.,
we take the conditional mean of the MSE and the resulting filter ex-
pressions depend on above conditional moments.

5. SIMULATION RESULTS

We present the results for a system with N = 4 antennas, K = 4
users, and QPSK modulation. The slot duration was Tslot = 6.67ms
at a carrier frequency of 2GHz. The Doppler frequency was 0.0123
(v = 10 km/h) normalized to Tslot and the temporal correlations
obeyed the Jakes model. The results were the mean of 5000 channel
realizations and 200 symbols were transmitted per channel realiza-
tion. We used a macro-cell environment with an offset of 5 degrees
(see [17]). The training sequence had Ntr = 16 symbols and the
dimensionality after rank reduction was d = 2. As suggested in
Subsection 3.4, we employed separate scalar quantizers withm bits
each, i.e., 2dm bits were fed back in total and the overall number
of codebook entries of Q′(•) wasM = 22dm. A feedback delay of
D = 1 slots was assumed.

In Fig. 3, the BER results are shown for non-robust and robust
linear precoders based on fed back CSI, where m = 2 bits per real
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Fig. 3. BER vs. SNR for linear precoders with overall 2dm = 8 bits
feedback per user

and imaginary part of every scalar coefficient are used. In total, every
user feeds back 2dm = 8 bits per slot. It can be seen in Fig. 3 that a
robust design is necessary, since the robust designs achieve a better
performance in terms of BER compared to the non-robust schemes
due to the lower saturation at high SNR. The optimized quantizer
resulting from the joint optimization proposed in this paper clearly
outperforms the uniform quantizer employed in [11].

The dependence of the BER performance on the number of bits
used for feedback is depicted in Fig. 4. Obviously, the performance
is improved, if the number of bits is increased, because the errors due
to the quantization process are smaller. Form = 4 bits and m = 6
bits, it can be seen in Fig. 4 that the BER of the non-robust schemes
even increases for high SNR due to the reduced regularization term
ξI with increasing SNR, i.e., zero-forcing precoding is performed
with erroneous CSI leading to a higher BER than for medium SNR.
The respective robust schemes do not show such a behavior, since
the precoder solution is regularized withChk

−r2
kVopt,kΨ 2

k ΥkV H
opt,k

that is independent of the SNR (we assumed a constant SNR for the
training symbols).
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