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ABSTRACT

We consider the design of linear precoders for broadcast channels
with Quality of Service (QoS) constraints for each user, in scenarios
with uncertain channel state information at the transmitter. Given a
total power constraint on the transmission power, our goal is to de-
sign a robust fair precoder that maximizes the minimum QoS over
all users that can be guaranteed for every channel within a speci-
fied uncertainty region around the estimate of each user’s channel.
Since this problem is not known to be computationally tractable, we
will derive three conservative design approaches that yield quasi-
convex and computationally-efficient restrictions of the original de-
sign problem. The three approaches yield formulations that offer
different trade-offs between the degree of conservatism and the size
of the design problem. Our simulations indicate that the proposed
approaches can significantly increase the minimum QoS of all users
when the available channel knowledge at the transmitter is imperfect.

Index Terms— MIMO Systems, Broadcast Channel, Multiuser
Channels, Robustness.

1. INTRODUCTION

Using multiple antennas at the base station of a wireless downlink
offers the potential to improve the quality of service (QoS) offered
to assigned users. When accurate channel state information (CSI) is
available at the base station, improvements can be realized by pre-
coding the users’ data symbols so as to mitigate the multiuser in-
terference experienced at the receivers. Assuming perfect CSI, the
problem of designing a linear precoder to minimize the transmitted
power required to satisfy a set of users’ QoS constraints was studied
in [1, 2, 3]. On the other hand, the design of a “fair” linear pre-
coder that maximizes the minimum QoS for all users under a total
transmission power constraint was studied in [2].

In practice, the CSI that is available at the transmitter is sub-
ject to uncertainties that arise from sources such as estimation error,
channel quantization, and short channel coherence time. These un-
certainties can result in a serious degradation to the quality of the
received signals; e.g., [4]. This suggests that one ought to incor-
porate robustness to channel uncertainty into the formulation of the
precoder design problem. For example, robust approaches to the
design of linear precoders that minimize the transmitted power re-
quired to satisfy a set of users’ QoS constraints have been studied
in [3, 5, 6, 7]. In this paper, we consider a bounded model for the
transmitter’s estimate of the users’ channels, and we study the design
of a robust fair precoder that maximizes the minimum QoS over all
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users that can be guaranteed for every channel within a specified un-
certainty region around the estimate of each user’s channel (See [8]
for minimum MSE transceiver designs for a similar model.) This de-
sign is particularly appropriate for systems in which users feed back
quantized channel measurements to the transmitter, as knowledge of
the quantization codebooks can be used to bound the quantization
error. The exact solution of this design problem is not known to be
computationally tractable, and we present three conservative design
approaches that yield quasi-convex and computationally-efficient re-
strictions of the original design problem. These formulations offer
different trade-offs between the degree of conservatism and the size
of resulting optimization problem. Our simulations indicate that the
proposed approaches can significantly increase the minimum QoS
that can be provided to all users when the available CSI at the trans-
mitter is imperfect.

2. SYSTEM MODEL

We consider broadcast channels with Nt antennas at the transmit-
ter and K receivers, each with a single antenna. Let s ∈ C

K be
the vector of data symbols intended for each receiver. The transmit-
ter generates a vector of transmitted signals, x ∈ C

Nt , by linearly
precoding s:

x = Ps =
∑K

j=1 pjsj , (1)

where pj is the j th column of the precoding matrix P, and sj is the
j th element of s. Without loss of generality, we will assume that
E{ssH} = I, and hence, a constraint on the average total transmit-

ted power is tr(PHP) =
∑K

k=1 ‖pk‖2 ≤ Ptotal.

The signal received by the kth receiver is yk = hkx+nk, where
hk ∈ C

1×Nt is a row vector representing the channel gains from the
transmitting antennas to the kth receiver, and nk is the zero-mean
additive white noise at the kth receiver whose variance is σ2

nk
.

2.1. Fair SINR Maximization: Perfect CSI Case

We consider broadcast scenarios in which each receiver has a QoS
requirement that is specified in terms of a lower bound on its signal
to interference plus noise ratio SINRk. This SINR constraint rep-
resents a rather general constraint on the minimum QoS of the k th

user. Indeed, it can be translated into an equivalent constraint on the
symbol error rate or the achievable data rate. Given perfect CSI at
the transmitter, the design of a precoder that maximizes the SINR of
the “weakest” user subject to a transmitted power constraint can be
stated as:

max
P,γ0

γ0 (2a)

s. t. SINRk = |hkpk|2
∑K

j=1,j �=k
|hkpj |2+σ2

nk

≥ γ0, (2b)
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tr(PHP) ≤ Ptotal, (2c)

where we have implicitly assumed that the constraint in (2b) must
hold for all k ∈ {1, . . . , K}. The problem in (2) is quasi-convex in
P and γ0. Indeed, if we define

P =

[
Re{P} Im{P}

− Im{P} Re{P}
]

, p
k

=

[
Re{pk}

− Im{pk}
]

,

hk =
[

Re{hk} Im{hk}
]
, (3)

then we can formulate (2) as [2]:

min
P,β0

β0 (4a)

s. t.
∥∥[hkP, σnk ]

∥∥ ≤ β0hkpk
, (4b)∥∥vec

(
[p

1
, . . . , p

K
]
)∥∥ ≤ √

Ptotal. (4c)

where β0 =
√

1 + 1/γ0 . An optimal solution can be efficiently
found using a one-dimensional bisection search on β0 in which the
problem solved at each step is the convex second order cone (SOC)
feasibility problem corresponding to (4) with a fixed value for β0.
Our goal is to obtain robust counterparts of this fair SINR maxi-
mization design problem in the presence of imperfect CSI.

2.2. Bounded Channel Uncertainty Model

We will model the channel uncertainty additively using

hk = ĥk + ek, (5)

where ĥk is the transmitter’s estimate of the kth user’s channel, and
ek is the corresponding error. In order to avoid making any assump-
tions on the statistics of ek, we will merely assume that it lies in the
ball ‖ek‖ ≤ δk, for some given δk. This model is a convenient one
for systems in which the channel state information is quantized at
the receivers and fed back to the transmitter; e.g., [4]. By using the
vector ek = [Re{ek}, Im{ek}], the uncertainty set of each channel
can be described by the following (spherical) region:

Uk(δk) = {hk | hk = ĥk + ek, ‖ek‖ ≤ δk}. (6)

3. FAIR SINR MAXIMIZATION: UNCERTAIN CSI CASE

Given a constraint on the total transmitted power, our goal is to de-
sign a robust precoding matrix that maximizes the minimum SINR of
all users that is guaranteed for every channel realizations hk within
the uncertainty region Uk(δk). That is,

min
P,β0

β0 (7a)

s. t.
∥∥[hkP, σnk ]

∥∥ ≤ β0hkpk
, ∀ hk ∈ Uk(δk), (7b)∥∥vec

(
[p

1
, . . . , p

K
]
)∥∥ ≤ √

Ptotal. (7c)

The problem in (7) has an infinite set of constraints, one for
each hk ∈ Uk(δk). Checking the feasibility of (7) for any given
β0 is equivalent to solving a robust second order cone programming
problem in which the uncertainty of hk is present on both left and
right hand sides of each SOC constraint in (7b). The structure of this
uncertainty is such that the tractability of that robust design problem
is still an open problem, e.g., [9]. In order to obtain a robust design
technique that is guaranteed to be computationally tractable, we will
present three conservative design approaches that yield quasi-convex

and computationally-efficient restrictions of (7). These approaches
are conservative in the sense that they provide a solution of the robust
design problem in (7) for a larger set of channel uncertainties than
that described in (6). Therefore these approaches minimize upper
bounds on β0, and hence maximize lower bounds on γ0.

4. THREE CONSERVATIVE APPROACHES

4.1. First Approach

In the first approach, we will implement the conservative design by
assuming independent uncertainties for hk in each of the left and
right hand sides of the constraints in (7b). Relaxing the common
uncertainty structure results in a tractable problem. To obtain the
tractable formulation we will use the following lemma [9]:

Lemma 1. Consider the following set of infinite constraints

‖Ax + b]‖ ≤ cT x + d ∀A ∈ Y, c ∈ W, (8)

where the uncertainty regions Y and W
Y = {A | A = A0 +

∑y
j=1 θi Aj , ‖θ‖ ≤ 1},

W = {c | c = c0 +
∑w

j=1 φi cj , ‖φ‖ ≤ 1},
are independent. Then, there exist positive scalars λ and μ such that
(8) is equivalent to the following two constraints:⎡

⎣ λ − μ 0 (A0x + b)T

0 μI [A1x . . . Ayx]T

A0x + b [A1x . . . Ayx] λI

⎤
⎦ ≥ 0,

[
c0T

x + d − λ [c1T
x . . . cwT x]

[c1T
x . . . cwT x]

T
(c0T

x + d − λ)I

]
≥ 0. �

By writing hk = ĥk +ek = ĥk + δku, ‖u‖ ≤ 1, and invoking
Lemma 1, the conservative design problem can be cast as:

min
P,β0,
μ,λ

β0 (10a)

s. t.
∥∥vec

(
[p

1
, . . . , p

K
]
)∥∥ ≤ √

Ptotal, (10b)[
β0ĥkpk

− λk δkβ0p
k

T

δkβkp
k

(β0ĥkpk
− λk)I

]
≥ 0, (10c)

⎡
⎣ λk − μk 0 [ĥkP, σnk ]

0 μkI δk[P, 0]

[ĥkP, σnk ]
T

δk[P, 0]T λkI

⎤
⎦ ≥ 0. (10d)

This problem is a quasi-convex problem, and the optimal robust so-
lution can be efficiently found using a one-dimensional bisection
search on β0 in which the problem solved at each step is the convex
semidefinite programming (SDP) feasibility problem corresponding
to (10) with a fixed value for β0.

4.2. Second Approach

In this approach, we will first obtain an equivalent matrix inequality
formulation of the fair precoder design problem with perfect CSI
in (4). Then, we will incorporate the uncertainty model to obtain a
robust counterpart to the perfect CSI formulation.

Using the Schur Complement Theorem, the formulation in (4)
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of the design problem with perfect CSI can be written as:

min
P, β0

β0 (11a)

s. t.
∥∥vec

(
[p

1
, . . . , p

K
]
)∥∥ ≤ √

Ptotal, (11b)

Fk(P, β0,hk) =

[
β0hkpk

[hkP, σnk ]

[hkP, σnk ]T (β0hkpk
)I

]
≥ 0. (11c)

The robust counterpart of (11c) takes the form:

Fk(P, β0,hk) ≥ 0, ∀ hk ∈ Uk(δk). (12)

By substituting hk = ĥk + ek in (12), we have that

Fk(P, β0, ĥk,Mk) = Fk(P, β0, ĥk)

+ MkRk(P, β0) + RT
k (P, β0)M

T
k ≥ 0, (13)

where the matrices Mk and Rk(P, β0) are:

Mk = I ⊗ ek, (14)

Rk(P, β0) =

[ 1
2
βkp

k
[P, 0]

0 ( 1
2
βk)I ⊗ p

k

]
. (15)

From (14), we observe that the uncertainty matrix Mk belongs to a
subspace M of block diagonal matrices with equal blocks:

M = {M |M = I ⊗ e, e ∈ R
1×2Nt}. (16)

Hence, the spectral norm of Mk is ‖Mk‖ = ‖ek‖ ≤ δk. Given
(13), the original problem in (7) can be precisely formulated as:

min
P, β0

β0 (17a)

s. t.
∥∥vec

(
[p

1
, . . . , p

K
]
)∥∥≤ √

Ptotal, (17b)

Fk(P, β0, ĥk,Mk) ≥ 0, ∀ Mk ∈ M, ‖Mk‖ ≤ δk. (17c)

A general instance of (17) is NP-hard for a general subspace M;
see [10, 9]. However, the advantage of (17) is that it captures the
difficulty of the problem in the particular structure that the matrix
M must possess. If we adopt a conservative approach that drops the
block diagonal structure constraint on Mk by replacing (17c) with

Fk(P, β0, ĥk,Mk) ≥ 0, ‖Mk‖ ≤ δk, (18)

an efficiently solvable problem can be obtained. Although (18) is
simpler than (17c), it still represents an infinite set of matrix inequal-
ities, one for each admissible Mk. However, this semi-infinite ma-
trix inequality constraint is equivalent to the existence of a positive
scalar τk, such that [10, Theorem 3.1][

Fk(P, β0, ĥk) − τk I RT (P, β0)
R(P, β0) τkδ−2

k I

]
≥ 0, (19)

Hence, the second conservative formulation of the robust fair SINR
maximization can be written as:

min
P,β0,
τ1,...,τK

β0 (20a)

s. t.
∥∥vec

(
[p

1
, . . . , p

K
]
)∥∥ ≤ √

Ptotal, (20b)[
Fk(P, β0, ĥk) − τk I RT (P, β0)
R(P, β0) τkδ−2

k I

]
≥ 0, (20c)

where Fk(P, β0, ĥk) and R(P, β0) were defined in (11c) and (15),
respectively. This optimization problem is quasi-convex and can be
efficiently solved by bisection search, in which each iteration solves
the semidefinite program in (20) for a given β0.

4.3. Third Approach

In the previous section we have seen that a conservative formulation
of the robust fair precoding problem could be obtained by relaxing
the structural constraint Mk ∈ M on Mk in the precise robust for-
mulation in (17) of the original robust design problem. In this section
we will present an alternative conservative formulation of (17) that
retains the structural constraint Mk ∈ M. In particular, by using
[10, Theorem 3.2], we can show that the solution of the following
quasi-convex problem generates a conservative solution to the origi-
nal robust design problem in (17).

min
P,β0
S1,...,SK

β0 (21a)

s. t. ‖vec
(
[p

1
, . . . , p

K
]
)‖ ≤ √

Ptotal, (21b)

Sk ≥ 0, (21c)[
Fk(P, β0, ĥk) − Sk RT (P, β0)
R(P, β0) δ−2

k Sk ⊗ I

]
≥ 0, (21d)

where Fk(P, β0, ĥk) and R(P, β0) are as defined in the previous
section. We point out that the problem in (20) is the special case of
that in (21) that is obtained when Sk takes the value τkI for τk ≥ 0.
Therefore, the solution of (21) yields a tighter upper bound on β0,
and hence a larger lower bound on γ0, than the solution of the one in
(20). In the Section 5, we will demonstrate that the preservation of
the structure of Mk by allowing each Sk to be any positive semidef-
inite matrix results in substantial performance improvement.

5. SIMULATION STUDIES

In this section we will compare the performance of the three robust
fair precoding approaches that are proposed in Section 4 (Robust
Appr 1, 2, 3). We will also provide performance comparisons with
existing approaches, namely the robust autocorrelation matrix ap-
proach in [3] (Robust Correl. Appr.), and the robust downlink power
loading approach in [7]. The approach in [7] requires the beamform-
ing vectors to be specified, and we will consider two choices: the

columns of the pseudo-inverse of Ĥ (Robust Power Load. 1); and

the beamforming vectors obtained by assuming that Ĥ is the actual
channel and using the existing methods for QoS precoding with per-
fect CSI [2] (Robust Power Load. 2). The approaches in [3] and [7]
are based on uncertainty models that are different from the one in
(6), and from each other. The approach in [3] considers a model in
which the spectral norm of the error in the (deterministic) autocorre-
lation matrix Ck = hH

k hk is bounded, and in the approach in [7] the
Frobenius norm of the error in Ck is bounded. However, by bound-
ing these norms of Ck in terms of the norm of ek, a comparable un-
certainty set can be generated.1 We will compare these schemes in an
environment with Nt = 3 transmit antennas and K = 3 users. We

1A bound on the spectral norm of the error in Ck can be obtained as

follows: ‖(ĥk+ek)H(ĥk+ek)−hH
k hk‖ = ‖ĥH

k ek+eH
k ĥk+eH

k ek‖ ≤
‖ĥH

k ek‖ + ‖eH
k ĥk‖ + ‖eH

k ek‖ = 2‖ĥk‖‖ek‖ + ‖ek‖2. This bound

also holds for the Frobenius norm, since the matrices on the immediate right

hand side of the inequality are all rank one. Furthermore, the uncertainty

ek = δkĥk/‖ĥk‖ achieves this upper bound with equality for both norms.
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Fig. 1. Percentage of channel realizations for which the considered

robust designs are able to achieve the prescribed guaranteed-SINR

threshold (Minimum SINR), for a system with Nt = 3 and K = 3.

will consider the conventional independent Rayleigh fading channel
model, and zero-mean additive white Gaussian noise (AWGN) with
unit variance.

In the first experiment, we examine the performance of 2000
randomly generated realizations of the set of channel estimates

{ĥk}K
k=1 in the presence of equal uncertainty, δk = δ = 0.05, ∀k.

For each set of channel estimates a robust fair precoder was designed
using one of the proposed methods (or one of the existing desings),
and we examine the performance of these designs by choosing a fair
SINR threshold above which the QoS guarantee is deemed accept-
able for all users, and determining the fraction of the sets of channel
estimates for which this threshold was satisfied. In Fig. 1 we provide
a histogram of the fraction of the 2000 channel realizations for which
there existed a feasible robust fair precoder (with any finite power)
to satisfy this threshold. From this figure, it is clear that both the sec-
ond and third approaches in Section 4 are more likely to be able to
meet the SINR threshold, especially as the threshold increases, with
the third approach that retains the structure of the uncertainty having
a significant advantage.

In the second experiment, we selected all the sets of channel esti-
mates from the 2000 sets used in the previous experiment for which
all design methods were able to satisfy a guaranteed SINR thresh-
old of 6 dB. We used these 264 sets of channel realizations to plot
the achieved fair guaranteed-SINR against the average transmitted
power in Fig. 2. We have also included the corresponding curve for
the case of perfect CSI at the transmitter; cf. [2] and (4). This figure
illustrates the saturation effect that channel uncertainty imposes on
the growth of the fair guaranteed-SINR with the transmitted power.
This effect was observed in [4] for non-robust linear precoding on
the MISO downlink with quantized CSI. Fig. 2 also illustrates the
role that robust fair precoding can play in extending the interval over
which linear growth of the minimum SINR, γ0, with the transmitted
power can be achieved. This is particularly evident for the second
and third robust approaches.

6. CONCLUSION

We have studied the design of a robust fair precoder that maximizes
a minimum QoS requirement over all users that can be guaranteed
for every channel within a specified uncertainty region around the
estimate of each user’s channel. Although that problem’s tractability
is not known, we presented three conservative design approaches
that yield quasi-convex and computationally-efficient restrictions of
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Perfect CSI

Fig. 2. Achieved fair guaranteed-SINR (Minimum SINR) against the

average transmitted power, for a system with Nt = 3 and K = 3.

the original problem. As illustrated by the simulations, the proposed
approaches can significantly increase the minimum guaranteed QoS
of all users when the available CSI at the transmitter is imperfect.
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