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ABSTRACT

It is well-known that the downlink beamforming problem of mini-
mizing the total transmit power under users’ signal-to-interference-
plus-noise ratio (SINR) constraints can be reformulated as a conic
quadratic optimization problem and efficiently solved, if the trans-
mitter is provided with the perfect information about the channel.
In this work, we study the robust counterpart of the latter, convex
problem. By robustness it is meant that the base station knows only
uncertainty regions where the exact channels lie, and that it is sup-
posed to satisfy the conic quadratic constraints for all channels that
belong to these regions. We provide a direct optimal solution for this
problem, based on the ellipsoid method from convex optimization
theory. By exploiting the structure of the problem, we define also
a virtual robust mean square error optimization problem, that can
be solved by semidefinite programming methods in a much more
efficient manner, and which presents (at least) a tight conservative
approximation of the main problem.

Index Terms— Broadcast channels, antenna arrays, robustness

1. INTRODUCTION

In this paper, we consider a downlink multiuser multiple-input single-
output (MISO) flat-fading wireless system, i.e., the base station (BS)
is equipped with multiple antennas, while the users have single an-
tennas. The BS simultaneously transmits independent signals to the
receivers. In one such setup, transmit beamforming can be used to
mitigate the interference and control the signal-to-interference-plus-
noise ratios (SINRs) [1]. If the channel state information (CSI) is
available at the transmitter, a sort of precoding can be applied, from
which the communication process can benefit significantly [2].

However, the assumption of having the perfect CSI at the BS
in a downlink scenario is quite unrealistic, due to various harmful
effects like noise, outdated channel estimates, limited feedback ca-
pacities, etc. (see, e.g., [3] and the references therein) that appear
in real-world wireless systems. Therefore, robust designs have to
be considered, in order to account for the disturbances in the CSI
at the transmitter. The robustness in this paper means that the BS
knows only the erroneous channel estimates and the uncertainty re-
gions that contain the accurate channel values, defined by the bounds
on the spectral norms of the CSI error vectors.

The problem of interest is a variation of the standard beamform-
ing problem, where the spatial transmit filter (precoder) of the BS is
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designed to minimize the total transmit power under a set of prede-
fined SINR targets [1]. The solution of this problem with the perfect
CSI at the transmitter is known from [1, 4] (see also the references
therein). In [1], for the case of rank-one channels, the problem is
shown to be equivalent to a conic quadratic problem. In this paper,
we consider the robust counterpart of the latter problem, by demand-
ing the fulfillment of constraints for all channels from the uncertainty
regions. This problem was solved suboptimally in [5] for the same
uncertainty model as the one assumed in this paper. Under somewhat
different uncertainty assumptions, a restriction of a similar robust
problem was analyzed also in [1].

Our first contribution is in noticing that the problem of inter-
est belongs to a class of uncertain conic quadratic problems with
simple ellipsoidal uncertainty, which can be solved optimally by the
ellipsoid method from convex optimization theory [6]. Then, we
approach the problem by exploiting its specific structure, and de-
rive a suboptimal solution using semidefinite programming (SDP)
methods [7]. The idea is based on the previous work [8], where
the same robust problem with maximal allowable mean square er-
ror (MSE) constraints, instead of the minimal SINR targets, was
optimally solved under uncertainty. In this way, a very efficient nu-
merical tool for the robust SINR-constrained precoder design, which
outperforms the related results in the literature in terms of the per-
formance/complexity tradeoff, is provided. Furthermore, from the
numerical simulations it seems that no performance gap exists in
comparison to the computationally much more involved, optimal so-
lution by the ellipsoid method.

We adopt the following notation: Small and large bold fonts are
used for vectors and matrices, respectively. The trace of a matrix, the
spectral norm and the Frobenius norm are denoted withTr(·), ‖(·)‖2
and ‖(·)‖F , respectively [9]. A � B means that A − B is posi-
tive semidefinite. The matrix transpose and the Hermitian transpose
are written as (·)T and (·)∗, respectively. A(k,:)

`
A(:,k)

´
denotes

the kth row (column) of A. �(·) and �(·) extract real and imagi-
nary parts of the argument, respectively. L

n is the Lorentz cone (the
second-order cone) in R

n [10].

2. SYSTEMMODEL AND PROBLEM STATEMENT

The downlink multiuser MISO system with K users is illustrated in
Fig. 1. The symbols for transmission by the BS are grouped in the
vector s = [s∗1, s

∗
2, . . . , s

∗
K ]∗, with E(ss∗) = I , w.l.o.g. The BS

array consists of M antennas. The complete multiuser flat-fading
channel is given as

H =
ˆ

H∗
(1,:) · · · H∗

(K,:)

˜∗
, (1)
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Fig. 1. System model.

where H (k,:) ∈ C
1×M is the channel of the user k. The BS is

assumed to know only estimates Ĥ (k,:) of the channelsH (k,:). The
errors in the CSI are modeled by bounding the spectral norms of the
CSI error vectors

H (k,:) = Ĥ (k,:)+Δ(k,:), ‖Δ(k,:)‖2 ≤ εk, ∀k ∈ {1, . . . , K}.
(2)

The model (2) naturally corresponds to disturbances that appear as
a result of quantization. However, even in the case of unbounded
disturbances that typically emerge in the channel estimation process
and have Gaussian distribution, the spherically bounded model can
serve well in providing the conservative robust solution for a given
outage probability [11].

The linear transmit filter of the BS is denoted withG ∈ C
M×K ,

while the user k performs a scaling of the received signal with p−1
k ∈

R++. The additive noise at the reception w = [w∗
1 , w∗

2 , . . . , w∗
K ]∗,

with E(wkw∗
k) = σ2

kI , is uncorrelated with the input signals s. The
received signal of the user k can be written as

ŝk =
1

pk

(H (k,:)Gs + wk), ∀k ∈ {1, . . . , K}, (3)

while the transmit power of the BS is

PTx = E(Tr(Gss
∗
G

∗)) = ‖G‖2F . (4)

The SINR of the user k can be expressed as

SINRk =
|H (k,:)G(:,k)|2PK

l=1, l�=k
|H (k,:)G(:,l)|2 + σ2

k

. (5)

Clearly, the multiplication with p−1
k at the reception has no effect

on the SINR values. However, we will see in the sequel how these
equalization coefficients play an important role in defining a virtual
MSE problem, whose solution will be of great interest.

Let γk are the predefined users’ SINR targets. We formulate the
main problem of interest as follows [5, 12]

min
G̃

1

2
‖G̃‖2F ,

s.t.
‚‚ ˆ

H̃ (k,:)G̃ σk

˜ ‚‚
2
≤

q
1 + γ−1

k H̃ (k,:)G̃(:,k),

∀‖Δ̃(k,:)‖2 ≤ εk, ∀k ∈ {1, . . . , K},

(6)

where

H̃ (k,:) =
ˆ �{H (k,:)} �{H (k,:)}

˜
, (7)

Δ̃(k,:) =
ˆ �{Δ(k,:)} �{Δ(k,:)}

˜
, (8)

G̃ =

» �{G} �{G}
−�{G} �{G}

–
. (9)

The fulfillment of the constraints in (6) guarantees obviously
that the SINR targets will be satisfied under uncertainty:

SINRk ≥ γk, ∀k ∈ {1, . . . , K}, ∀‖Δ(k,:)‖2 ≤ εk. (10)

In [1], it is shown that the non-robust instance of (6), with εk =
0, ∀k, is actually equivalent to the standard beamforming problem
of minimizing the total transmit power (4) under the constraints (10)
with no uncertainty. The idea for the transformation was in noticing
that the kth column of the matrix G can be multiplied with a com-
plex factor ejωk without changing the objective function, so that the
term H (k,:)G(:,k) in the numerator of (5) can be real and positive.
However, it is important to remark that, due to the channel uncer-
tainty, the same reasoning cannot be applied for supporting an infi-
nite number of channels contained in the uncertainty regions, with
a single set of filters. Therefore, the solution of our main problem
of interest (6) yields an achievable performance (an upper bound)
for the even more involved problem of minimizing the total transmit
power under the constraints (10).

3. SOLUTION BY THE ELLIPSOID METHOD

In this section, we show that the problem (6) belongs to a class of un-
certain conic quadratic problems with simple ellipsoidal uncertainty.
These problems are known to be tractable, and they can be solved
exactly using the ellipsoid method from convex optimization theory
[6].

The first necessary requirement for the ellipsoid method is the
ability to calculate the subgradient of the objective function. In our
case this is trivial. Map the unknown coefficients of the transmit
filter in the vector g =

ˆ
G̃

∗

(:,1) · · · G̃
∗

(:,K)

˜∗. Clearly, the
objective function is equal to ‖g‖22 and it is differentiable, so the
subgradient is equal to the usual gradient: ∂PTx = 2g.

The second ingredient is the construction of a routine for deter-
mining whether a particular point ḡ ∈ R

2MK is feasible for (6), and,
if not, for calculating the separation vector

a
T
ḡ ≥ sup

g∈D

a
T
g, a 
= 0, (11)

where D is the domain of (6). This task is considerably more com-
plex. We start by noticing that D is an intersection of sets Dk ,
k = 1 . . . K, where Dk is the feasible region for the constraint re-
lated to the user k in (6). From (6), it follows that Dk presents an
intersection of an infinite number of sets that correspond to the indi-
vidual channels from the uncertainty regions. It can be easily seen
that these sets are convex, soDk must be convex too, as intersection
preserves convexity [10]. In the sequel, we focus on determining
the separation hyperplanes related to the kth user constraint and the
domain Dk. Clearly, the global separation oracle consists then of
examining each of the user constraints, and, if any one of them is
infeasible, the separation hyperplane obtained for Dk will be an ap-
propriate separation hyperplane for D, as well.

We proceed by noticing that the kth user constraint in (6) can be
easily rewritten in the form

‚‚Φ(g)δ + ψ(g)
‚‚

2
≤ α

T (g)δ + β(g), ‖δ‖2 ≤ ε, (12)

where δ = Δ̃
T

(k,:), ε = εk, and Φ, ψ, α and β are affine in the
unknown precoder coefficients g. Due to the lack of space, in this
paper, we only give a sketch of the algorithm for the analysis of (12),
applying the robust optimization methodology from [13]. The user
index k and the dependence on g will be occasionally omitted in rest
of this section, in order to simplify the expressions.

Using the Cauchy-Schwarz inequality [9] and the S-Lemma [10],
it can be proved that (12) is valid, if and only if, the following two
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inequalities are fulfilled

ε‖α‖2 ≤ β, (13)»
λI + ααT −Φ

T
Φ βα −Φ

T ψ

βαT − ψT
Φ β2 −ψT ψ − λε2

–
� 0, (14)

for some λ ≥ 0. Examining the validity of (13) is trivial for a given
vector g = ḡ, and, in the case when (13) is not valid, the separa-
tion vector is easily obtained using the Cauchy-Schwarz inequality.
It can be also noticed that for a fixed g, (14) is a linear matrix in-
equality (LMI) in λ. Therfore, its feasibility can be checked using
some of the well-developed methods from convex optimization the-
ory. In the case when (14) is infeasible, a direct, efficient procedure
suggested in [13] yields as a byproduct a vector δ̄ for whom (12) is
not valid. Having found one such vector, the separation hyperplane
can be constructed as follows.

Let ȳ =
h
(Φ

`
ḡ)δ̄ + ψ(ḡ)

´T
, αT (ḡ)δ̄ + β(ḡ)

iT

/∈ L
2K+2.

Set v =
h`

Φ(ḡ)δ̄ + ψ(ḡ)
´T ‖Φ(ḡ)δ̄ + ψ(ḡ)‖−1

2 ,−1
iT

and no-

tice that vT ȳ ≥ vT y, for all y ∈ L
2K+2. The homogenous part of

vT
h
(Φ

`
g)δ̄ + ψ(g)

´T
, αT (g)δ̄ + β(g)

iT

, which can be imme-
diately computed because of the affinity of the respective terms in g,
gives the required separation vector a.

The solution, based on the ellipsoid method, is summarized in
Table 1, where d = 2KM is the dimension of the unknown vector
g. We remark that the initialization and the convergence condition
can be formalized, which we omit due to the lack of space.

Table 1 Algorithmic solution for the robust equalizer.
1: Initialize the first search ellipsoid {ḡ0 + B0u, ‖u‖2 ≤ 1}. Set

t = 0 (step number).
2: repeat
3: t ← t + 1
4: ḡt−1 /∈ D: Calculate at by examining the uncertain con-

straints in (6) for k = 1, . . . , K. Skip the following step.
5: ḡt−1 ∈ D: Calculate the vector at as the subgradient of the

objective function in ḡt−1. If at = 0 the optimal solution is
ḡt−1.

6: Update the search ellipsoid:

xt =
BT

t−1atq
aT

t Bt−1B
T
t−1at

, ḡt = ḡt−1 −
1

d + 1
Bt−1xt,

Bt =
d√

d2 − 1
Bt−1 +

„
d

d + 1
− d√

d2 − 1

«
Bt−1xtx

T
t ,

7: until : convergence is reached

Finally, we formulate the main conclusion of this section as a
theorem:

Theorem 1 The algorithm from Table 1 converges to the optimal
solution of the problem (6).

4. VIRTUALMSE-OPTIMIZATION PROBLEM

Consider now a variation of the main problem, where instead of the
uncertain minimum SINR constraints, maximum MSEs under un-

certainty must be satisfied:

min
G,p1,...,pK

‖G‖2F ,

MSEk ≤ qk, ∀‖Δ(k,:)‖2 ≤ εk ∀k ∈ {1, . . . , K},
(15)

where MSEk = E(|sk − ŝk|2) and qk ∈ (0, 1) (notice that other
values for qk would not make sense). Clearly, for calculating MSEs,
the scaling factors pk are of interest [14, 8]. It is shown in [8] that
the following claim holds:
Theorem 2 The problem (15) is equivalent to the SDP problem

min
G,p1,...,pk,λ1,...,λK

‖G‖2F ,

2
664

pk
√

qk − λk Ĥ (k,:)G − pke∗
k σk 0

G∗Ĥ
∗

(k,:) − pkek pk
√

qkI 0 −εkG∗

σk 0 pk

√
qk 0

0 −εkG 0 λkI

3
775

� 0, ∀k ∈ {1, . . . , K},
(16)

where λk are slack variables and ek make the standard basis of RK .

We are now in position to approach the problem (6) indirectly.
Theorem 3 If the MSE problem (15) is feasible with the targets
qk ∈ (0, 1), k = 1 . . . K, and ifGopt is the resulting optimal trans-
mit filter, the SINR constraints in (6) are satisfied for γk = 1

qk

− 1,
k = 1 . . . K, with the same transmit filterGopt.

Proof: It can be seen that the conditionMSEk ≤ qk is equivalent to
KX

l=1, l�=k

˛̨̨ 1

pk

H (k,:)G(:,l)

˛̨̨2
+

˛̨̨ 1

pk

H (k,:)G(:,k) − 1
˛̨̨2

+
σ2

k

p2
k

≤ qk.

(17)
Since pk > 0 and qk ∈ (0, 1), from the term in the middle of the left
hand-side of (17) it follows that�{H (k,:)G(:,k)} ≥ 0. Therefore, it
is sufficient to prove thatMSEk ≤ qk implies (notice that 1+γ−1

k =
(1− qk)−1)

‚‚ ˆ
H (k,:)G σk

˜ ‚‚2

2
≤ 1

1− qk

“
�{H (k,:)G(:,k)}

”2

. (18)

We proceed by rewriting (17) in an equivalent form‚‚ ˆ
H (k,:)G σk

˜ ‚‚2

2

≤ p2
kqk +

˛̨
H (k,:)G(:,k)

˛̨2 − ˛̨
H (k,:)G(:,k) − pk

˛̨2
.

(19)

Denote with D the right hand-side of (19). Finally, the theorem is
proved by the fact that

D ≤ 1

1− qk

“
�{H (k,:)G(:,k)}

”2

(20)

is always true, because (20) is equivalent to“
�{H (k,:)G(:,k)} − pk(1− qk)

”2

≥ 0. (21)

�

Therefore, by exploiting the specific structure of the considered
problem, an involved uncertain conic problem with ellipsoidal un-
certainty can be conservatively solved by SDP methods (16), which
are known to exhibit significantly better convergence properties [6].
Notice that the well-known relation between MSE and SINR used
in Theorem 3 yields equivalent problems in the sense that the same
transmit filter is obtained, if there is no uncertainty [14]. Theorem
3 implies that this relation connects, at least to a certain extent, the
robust counterparts of the standard beamforming problems, as well.
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Fig. 2. Minimal transmit power for various SINR targets γ3.

5. NUMERICAL EXAMPLE

A numerical simulation of a system with M = K = 3 is obtained
using SeDuMi [15]. One randomly chosen, estimated (erroneous)
channel is kept constant for all simulations to illustrate the typical
performance and avoid requirements on the feasibility:

Ĥ =

2
4 0.12 + 0.72j 1.19− 0.13j 0.32 + 0.05j

0.28 − 0.58j 1.18 + 0.11j 0.17 − 0.09j
−1.14 + 2.18j −0.03 + 1.06j −0.18− 0.83j

3
5 .

The SINR targets γ1 and γ2 of the first and the second user are set
to 10. In Fig. 2, the minimal transmit power for various SINR tar-
gets γ3 of the third user and two noise powers (assumed fixed for all
users) is shown. The bounds on the uncertainty for all three chan-
nels are assumed to be εk = 0.1. It can be seen that our SDP-
based solution outperforms in performance the robust SDP-based
method that accounts for structured uncertainty (structured RSDP)
from [5], which solves the problem (6) suboptimally. Furthermore,
the size of the LMI and the number of additional slack variables
corresponding to the kth user constraint are 2(K + 1)(2M + 1)
and (K + 1)(2K + 3) in [5], respectively, which is significantly
larger comparing to 2(K + M + 2) (real-valued SDP representa-
tion) and 2 for the same parameters in (16). Finally, the conservative
solution from Section 4 seems to match perfectly with the perfor-
mance of the optimal ellipsoid method, both in the minimal transmit
power (the obtained transmit filter) and the feasibility region where
the SINR target γ3 can be supported. However, though we can re-
port the same conclusions for a large number of channels/scenarios
we have examined, we still miss the analytical proof of the eventual
global optimality of the proposed SDP method.

6. CONCLUSION

Robust precoder design in a SINR-constrained downlink multiuser
MISO system has been studied. The problem of interest was firstly
solved optimally by noticing that it belonged to a class of uncer-
tain conic problems for whom the ellipsoid method could be applied.
Then, a conservative, SDP-based solution was derived by exploiting

the structure of the problem. This enables the application of much
more efficient numerical tools, while the performance seems not to
be degraded. A proof that the virtual MSE problem from Section 4
and the problem (6) are equivalent in the sense that the same transmit
filter is obtained, and a relation to the intricate problem of minimiz-
ing the total transmit power subject to the constraints (10) remain as
interesting topics for the future work.
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