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ABSTRACT

In wireless multiple antenna and multi-user systems, the spatial di-
mensions may be exploited to increase the performance by means
of antenna gain, spatial diversity, and multi-user diversity. A limit-
ing factor in such systems is the channel information required by the
transmitter to control the intra-cell interference.

Herein, the properties of spatially correlated channels with long-
term statistical information at the transmitter and fixed-rate feedback
of the quantized Euclidean channel norm are analyzed using a spec-
tral subspace decomposition framework. A spatial division multi-
ple access scheme is proposed with interference suppression at the
receiver and joint scheduling and zero-forcing beamforming at the
transmitter. Closed-form expressions for first and second order mo-
ments of the feedback conditional channel statistics are derived. It
is shown that only a few bits of feedback are required to achieve
reliable rate estimation and weighted sum-rate maximization.

Index Terms— Array signal processing, Feedback, MIMO sys-
tems, Mobile communication, Spatial division multiple access

1. INTRODUCTION

The spatial dimensions of a multiple-input multiple-output (MIMO)
wireless system can be utilized to increase the performance. When
full channel-state information (CSI) is present and the scattering
is sufficiently rich, the channel capacity increases linearly with the
number of spatial subchannels [1]. The amount of feedback needed
to achieve full CSI at the transmitter is however prohibitive in many
realistic scenarios. When only long-term statistics and a limited
amount of feedback information is available at the transmitter, the
spatial dimensions can be exploited using spatial division multiple
access (SDMA) [2]. This technique is used in this paper in the down-
link of a multi-user MIMO system with spatially correlated fading.

Several approaches have been proposed to implement SDMA in
systems with limited feedback—for example, opportunistic beam-
forming [3] and feedback supported eigenbeamforming [4]. In
multi-user opportunistic beamforming, the base station randomly
chooses a set of orthogonal beamforming vectors (i.e., directions
in which data may be transmitted to different users). Each user
feeds back the index of the beam that provides the largest signal-
to-interference-and-noise ratio (SINR) and the corresponding value
of the SINR. When the number of users is large, it is likely that there
for each beam exist users that experience particularly strong SINRs.

The SDMA systems analyzed in [4] follow another approach,
namely that each single-antenna user feeds back the norm of its
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channel (before determining the transmit beamformers). This infor-
mation is sufficient to perform joint scheduling and beamforming in
a spatially correlated channel. Minimum mean square error (MMSE)
estimates of signal and interference powers are calculated using [5].

Herein, the feedback supported eigenbeamforming approach in
[4, 5] is generalized to a MIMO system with feedback of the L-
bit quantized Euclidean channel norm. A communication model
is proposed where the transmissions take place over the statisti-
cally strongest subchannel and where receive beamformers are used
to suppress the most interfering subchannels over which no signal
power is transmitted. Joint scheduling and zero-forcing beamform-
ing is utilized to almost completely suppress the intra-cell interfer-
ence. Finally, it is shown in simulations that the proposed method
outperforms opportunistic beamforming.

2. SYSTEM MODEL

The system model considers the downlink of a macro-cellular en-
vironment with a single elevated base station and several mobile
users. The base station is exposed to little or no local scattering
and is equipped with an array of nT antennas, while each terminal is
surrounded by rich local scattering and is equipped with an array of
nR antennas. The symbol-sampled complex baseband equivalent of
the narrowband flat fading channel to user k is represented by

Hk = [hk,1 . . .hk,nR ]H ∈ C
nR×nT , (1)

where [·]H denotes the conjugate transpose. The elements of the
channel matrix Hk to user k are modeled as Rayleigh fading. The
rows of Hk are independent and identically distributed as hk,n ∈
CN (0,Rk), n = 1, . . . , nR. Here, Rk ∈ CnT×nT is a Hermitian,
positive definite covariance matrix. These assumptions can be re-
laxed leading to slight differences in the analysis. Under the current
environment assumptions, the covariance matrix Rk will be domi-
nated by one or a few eigenmodes—that is, there is significant spatial
correlation [6]. The received vector yk(t) of user k is modeled as

yk(t) = VH
k Hkx(t) + nk(t), (2)

where x(t) is the transmitted signal vector, nk(t) ∈ CN (0, σ2
kI) is

additive white noise, and Vk ∈ CnR×nR−nI is the receive beam-
forming matrix (nI is defined in the next section). The system model
depends on three different time scales. The index t ∈ Z denotes the
symbol slot on which scale the noise is a white process. The multi-
path propagation is modeled as quasi-static block fading; that is, the
channel realization is constant for a block of symbols and for the next
block the channel is modeled as independent. The statistics change
even more slowly due to large scale variations, thus the base station
is assumed to track the current Rk and σ2

k perfectly (using the re-
verse link channel estimates or negligible long-term overhead). The
current channel matrix realization Hk is only known to user k.
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3. PROPOSED COMMUNICATION SYSTEM

In this section we propose a spectral subspace decomposition of the
channel statistics (similar to [4]) that is used to characterize the sub-
spaces that are useful for transmission and those that play an essen-

tial role for the interference. Let Rk = UkΛ̃kU
H
k be the eigenvalue

decomposition of the covariance matrix of user k. Assume that the
eigenvalues of Rk are distinct. Then, without loss of generality, we

can assume that Λ̃k = diag(λ
(k)
1 , . . . , λ

(k)
nT ) with the eigenvalues

λ
(k)
i ordered decreasingly. The eigenvectors are given by the cor-

responding columns of the unitary matrix Uk. The assumption of
spatial correlation motivates the subspace partitioning

Rk =
[
u

(D)
k U

(I)
k U

(0)
k

]
Λ̃k

[
u

(D)
k U

(I)
k U

(0)
k

]H
, (3)

where u
(D)
k ∈ CnT×1 spans the subspace associated with the largest

and thereby dominating eigenvalue. This subspace will later be used

for transmission. Similarly, U
(I)
k ∈ CnT×nI spans the subspace as-

sociated with the nI following eigenvalues which are non-negligible
compared to the dominating eigenvalue. Hence, the user will be sen-
sitive to interference in this subspace and may require interference

suppression. Finally, U
(0)
k ∈ CnT×n0 spans the subspace of the

remaining n0 = nT − nI − 1 eigenmodes. These eigenvalues are
typically close to zero, thus the user can ignore interference in this

subspace. The optimal dimension, nI , of U
(I)
k depends on, for ex-

ample, the channel statistics, the number of users, and the operating
SINR. Herein, it is viewed as a design parameter that can be used
to optimize the performance for each given system. The only re-
quirement herein is that nI ≤ nR − 1, since we will use the receive

beamformer to cancel the interference transmitted over U
(I)
k .

3.1. Transmit Beamforming and SINR

In order to maximize the received signal power, the transmit beam-
former wk ∈ CnT of user k should be chosen with a large compo-

nent within the dominating subspace (i.e., wk = u
(D)
k ). Since we

have an SDMA system, the base station should also consider the in-
terference that the transmission to user k inflicts on all simultaneous
co-channel users when choosing the beamformer. In Section 5 we
propose the use of a greedy user selection with zero-forcing beam-
forming to solve the problem of allocating transmission resources
to an appropriate set of users with suitable beamformers. Let S de-
note the set of users scheduled for transmission in symbol slot t, pk

the allocated transmission power, and sk(t) the symbol intended for
user k ∈ S, then the transmitted signal x(t) in (2) is defined as

x(t) =
∑
k∈S

√
pkwksk(t). (4)

The channel quality when considering interference can be character-
ized by the SINR. Let ‖ · ‖ denote the Euclidean norm. Then, the
instantaneous SINR for each symbol transmitted to user k, ignoring
inter-cell interference, is obtained by combining (2) and (4):

SINRk =
pk‖VH

k Hkwk‖2∑
i∈S\{k}

pi‖VH
k Hkwi‖2 + σ2

k

. (5)

3.2. Receive Beamforming

A receive beamformer is proposed that exploits that the receiver has
knowledge of the channel realization Hk while the transmitter only
has long-term statistical information. Our approach aims at provid-
ing reliable SINR estimation at the transmitter and is not claimed to

maximize the SINR. The purpose of the receive beamformer is to in-
crease the SINR by suppressing the interference while maintaining
most of the signal power. The receiver has no information regarding
the other users, but the subspace partition in (3) suggests that the in-
terference mostly originates from interfering transmissions over the

subspaces u
(D)
k and U

(I)
k . Since the exact signal and interference

structure is unknown to the receiver, it cannot selectively suppress

the interference in u
(D)
k . Therefore, U

(I)
k is more suitable to inter-

ference cancellation. This subspace is not used for signalling and
hence we propose that the receive beamformer Vk should be used to

cancel all power transmitted in HkU
(I)
k by choosing it as

Vk = null
(
(HkU

(I)
k )H) ∈ C

nR×nR−nI , (6)

where null(·) gives an orthonormal basis to the right null space
and can be calculated using the singular value decomposition. Let
H̄k = VH

k Hk = [h̄k,1, . . . , h̄k,nR−nI ]H and observe that Vk is
determined using only the channel realization within the interfer-
ence sensitive subspace. Hence, the experienced channel H̄k will
still be Rayleigh fading. The transmitter can therefore exploit that
h̄k,n ∈ CN (0,Qk), for n = 1, . . . , nR −nI , where the covariance
matrix is defined by the eigenvalue decomposition Qk = UkΛkU

H
k

with Uk as the partioned matrix in (3) and

Λk =diag(λ
(k)
1 , 0, . . . , 0, λ

(k)
nI+2, . . . , λ

(k)
nT

). (7)

Hence, the receive beamformer will transform the MIMO channel
into a channel that essentially has rank one and is aligned with u

(D)
k .

3.3. Feedback and Rate Estimation

In order to ensure reliable communication to each scheduled user, no
user should be assigned a rate exceeding its outage capacity. Since
the capacity is a function of the instantaneous SINR it is important
for the transmitter not to overestimate the SINR, given in (5), with a
probability larger than the acceptable outage probability.

The MMSE estimates of the instantaneous signal and interfer-
ence power can be calculated using the channel statistics. The es-
timates can be improved significantly by utilizing feedback of the
channel norm—especially when the norm is strong (relative to its
mean value) [5] and strong users are good candidates for schedul-
ing. Herein, we consider a system where each user k feeds back a
quantized variable, ρk, representing an interval of the squared Eu-
clidean norm ‖VH

k Hk‖2, through an error-free feedback channel.
This variable is properly defined in Section 4, where it is used to
derive moments of the conditional channel statistics.

Let E{·} and D{·} denote the mean value and square root of the

variance, respectively, and let Sk̃ � S\{k} and ρk̃ � {ρi}i∈S\{k}.
Similar to [4], the SINR can then be estimated pessimistically (with
the design parameter α to fulfill the outage probability) as

ŜINRk =
pk[E{‖H̄kwk‖2|ρk} − αD{‖H̄kwk‖2|ρk}]∑

i∈S
k̃

piE{‖H̄kwi‖2|ρk}+αD{ ∑
i∈S

k̃

‖H̄kwi‖2|ρk̃}+σ2
k

(8)
and utilized to calculate the supported rate using the rate function
rk = r(SINRk), which is assumed to be non-decreasing. The Shan-
non capacity r(x) = log2(1+x) will be used as rate function in the
simulations, but nothing else in the paper is restricted to this choice.

3.4. System Operation

The cyclic system operation is shown in Fig.1. Recall that the chan-
nel is modeled as block fading. The cycle starts in the beginning of a
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Pilot/Feedback
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Fig. 1. Schematic system operation at the base station.

block and orthogonal pilot sequences are transmitted by the base sta-
tion, which allows each user to estimate its current channel realiza-
tion and use it to determine its receive beamforming matrix Vk using
(6) and calculate the squared channel norm ‖VH

k Hk‖2. Each user
feeds back its L-bit quantization ρk of the squared channel norm.
The base station combines the feedback with the long-term statistics
to estimate the SINR as a function of the transmit beamformers. The
scheduler uses these estimates to iteratively allocate resources to ap-
propriate sets of users. When a block with a new channel realization
begins, the cycle starts all over again.

4. L-BIT QUANTIZED CHANNEL NORM FEEDBACK

It has been shown under various conditions [4, 5, 7] how the chan-
nel statistics can be combined with the Euclidean norm of the chan-
nel matrix to perform beamforming and acquire conditional channel
information at the transmitter. In general, it will however be im-
possible to feed back the real-valued channel norm using a limited
number of bits. This paper therefore analyzes the case when user k
feeds back ρk, which is an L-bit quantization of the squared channel
norm ‖H̄k‖2 representing a certain interval of the value.

Next, we discuss how the interval boundaries can be chosen and
the SINR estimated at the transmitter, but only for nI = nR − 1
(i.e., H̄k = h̄H

k,1) due to space limitation. The user indices will be
dropped in this section for brevity. First, we consider the distribution
of ‖H̄‖2. Let v̄ be the vector of independent variables that satisfy
v̄ = UH h̄. Observe that ‖v̄‖2 = ‖h̄‖2 and v̄ ∈ CN (0,Λ). Let Ω
be the index set of all non-zero eigenvalues of Λ. The CDF of ‖h̄‖2

is [5]

F‖h̄‖2(�) = 1 −
∑
j∈Ω

e
− �

λj∏
i∈Ω\{j}

(
1 − λi

λj

) . (9)

The range of ‖h̄‖2 ∈ [0,∞) should be divided into 2L disjoint in-
tervals, such that both the transmitter and the receiver knows that ρ
means that Aρ ≤ ‖h̄‖2 < Bρ. Since the scheduler seeks to allo-
cate users with strong channel realizations, we propose that the first
interval should contain ‖h̄‖2 < F−1

‖h̄‖2(C), where F−1
‖h̄‖2(·) denotes

the inverse of the CDF and C is a design parameter. C is chosen
such that sufficiently many users are likely to have a squared norm
outside the first interval to perform efficient scheduling. The remain-
ing probability density is divided into intervals of equal probability.
Hence, if ρk ∈ {0, . . . , 2L − 1} then A0 = 0, B2L−1 = ∞, and

Aj+1 = Bj = F−1
‖h̄‖2

(
C +

1−C

2L − 1
j
)
, j = 0, . . . , 2L − 2. (10)

No closed-form expression is provided for the bijective and non-
decreasing function F−1

‖h̄‖2(·), but estimates of Aj and Bj can be

calculated efficiently using a line search.

4.1. Calculating the First and Second Order Moments

Theorem 1 gives closed-form expressions of the first and second or-
der moments of the channel statistics, conditioned on the quantized
feedback parameter ρk, for the special case when the covariance ma-
trix is diagonal and has distinct eigenvalues. Corollary 1 shows how
these results are generalized to the channel conditions considered in

this paper (still nI = nR − 1). These results can be used directly to
calculate the SINR estimate in (8) as a function of the transmit beam-
former, which corresponds to the second box in the system operation
shown in Fig. 1. Observe that the quantization and the expressions
in Theorem 1 only depend on the long-term statistics and therefore
need to be recalculated only at the rate the statistics change.

Theorem 1. Let v = [v1, . . . , vN ]T ∈ CN (0,Λ), with the co-
variance matrix Λ = diag{λ1, . . . , λN} where all λi are distinct
and strictly positive. Let the variable ρ contain the information that
Aρ ≤ ‖v‖2 < Bρ. Let n �= l, gρ =

∑N
k=1

e−Aρ/λk−e−Bρ/λk∏
i�=k(1−λi/λk)

,

S1
j =

∑
i�=j

λi
1−λi/λj

, and S2
j =

∑
i�=j

λ2
i

(1−λi/λj)
2 . Then

E{|vl|2|ρ} =
1

gρ

[
(Aρ + λl)e

−Aρ
λl − (Bρ + λl)e

−Bρ
λl∏

i�=l

(
1 − λi

λl

)
+

∑
k �=l

λl

(
e
−Aρ

λl − e
−Bρ

λl

) − λk

(
e
−Aρ

λk − e
−Bρ

λk

)(
1 − λk

λl

)∏
i�=k

(
1 − λi

λk

) ]

E{|vl|4|ρ} =
1

gρ

[(
Aρ+λl−S1

l

)2
e
−Aρ

λl −(
Bρ+λl−S1

l

)2
e
−Bρ

λl∏
i�=l

(
1 − λi

λl

)
+

(
λ2

l + S2
l

)(
e
−Aρ

λl −e
−Bρ

λl

)∏
i�=l

(
1 − λi

λl

) +
∑
k �=l

2λ2
k

(
e
−Aρ

λk −e
−Bρ

λk

)(
1− λk

λl

)2 ∏
i�=k

(
1− λi

λk

)]

E{|vn|2|vl|2|ρ} =
1

gρ

[ ∑
k �∈{n,l}

λ2
k

(
e
−Aρ

λk − e
−Bρ

λk

)(
1 − λk

λl

)(
1 − λk

λn

)∏
i�=k

(
1 − λi

λk

)

+

(
λnS1

n−λ2
n+ λlλn

1−λl
λn

)(
e
−Aρ

λn− e
−Bρ

λn

)−λn

(
Aρe

−Aρ
λn−Bρe

−Bρ
λn

)
(
1− λn

λl

)∏
i�=n

(
1− λi

λn

)
+

(
λlS

1
l −λ2

l + λnλl

1−λn
λl

)(
e
−Aρ

λl − e
−Bρ

λl

)−λl

(
Aρe

−Aρ
λl −Bρe

−Bρ
λl

)
(
1− λl

λn

)∏
i�=l

(
1− λi

λl

) ]

Proof. The proof follows by the law of total probability, using ex-
pressions derived in [5]. A special case has been shown in [7].

Corollary 1. Let h ∈ CN (0,R), where R = UΛ̄UH ∈ CN×N

is the eigenvalue decomposition. Let all non-zero eigenvalues λi

of Λ̄ be distinct, positive, and have indices gathered in the set
Ω. Let u and ũ be two complex-valued vectors and define w =
[w1, . . . , wN ]T = UHu and w̃ = [w̃1, . . . , w̃N ]T = UH ũ. Let
ρ contain the information that Aρ ≤ ‖h‖2 < Bρ. Next, define
Λ̂ ∈ CN×N and T ∈ CN×N as

[Λ̂]ij =

{
E{|vi|2|ρ}, i=j,

0, i �=j,
[T]ij =

{
E{|vn|4|ρ}, i=j,

2E{|vi|2|vj |2|ρ}, i �=j,

where E{|vi|2|ρ}=E{|vi|2|ρ}=0 for i �∈ Ω, E{|vi|2|vj |2|ρ}=0
for i �∈ Ω or j �∈ Ω and the other terms are given by Theorem 1
using Λ=diag({λl; l ∈ Ω}). Then the following expressions arise:

E{|hHu|2|ρ} = wHΛ̂w = uHUΛ̂UHu,

E{‖hHu‖2‖hH ũ‖2|ρ} =
1

2
(pHTp̃ + p̄HTp̄),

E{‖hHu‖4|ρ} = pHTp,
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where p = [|w1|2, . . . , |wN |2]H , p̃ = [|w̃1|2, . . . , |w̃N |2]H , and
p̄ = [w1w̃

∗
1 , . . . , wN w̃∗N ]H .

5. JOINT SCHEDULING AND BEAMFORMING

In order to allocate resources to appropriate sets of users with suit-
able beamforming matrices, a scheduler needs to be defined. Opti-
mal joint scheduling and beamforming, in the sense of maximizing
some weighted sum-rate criterion, is very difficult to achieve and
the solution is usually too complex for real-time applications. To
show the merits of our communication scheme, we use the subop-
timal greedy resource allocation algorithm proposed in [4]. This
algorithm is based on maximizing the weighted sum-rate criterion

RΣ =
∑

k∈S βkr(ŜINRk) by choosing the set of scheduled users
S and the beamforming vector wk for k ∈ S. The user priority is
determined by βk and can be used to control the fairness. No limita-
tions are introduced on how the signal power can be allocated.

The algorithm is iterative and searches for the user k �∈ S that
would provide the largest increase in RΣ if added to S. We add this
user to S and proceed iteratively as long as |S| < nT and RΣ is
increasing. The transmit beamformers wk are derived by estimating

the experienced channel H̄k of user k by (u
(D)
k )H and then perform-

ing traditional zero-forcing for systems with single receive antennas.

6. PERFORMANCE EVALUATION

The performance of the proposed system is compared to opportunis-
tic beamforming in a circular cell with an eight-antenna uniform cir-
cular array (UCA) at the base station and with mobile users equipped
with four antennas. The angular spread is 15 degrees as seen from
the base station. The power allocation is uniform and gives an aver-
age SNR of 10 dB for a user at the cell edge with a random trans-
mit beamformer. The same simulation assumptions are made as in
[7], including proportional fairness weighting [8] on both methods.
The quantization intervals have uniform probability. The evalua-
tion consists of 2600 scenarios, each representing a unique random
constellation of mobiles with fixed statistics, where the average cell
throughput is calculated over 64 blocks with independent channel
realizations, each used to schedule symbols in 4 slots. The random
beams of the opportunistic beamforming are fixed during each real-
ization, so the feedback is comparable to the proposed system. The
outage probability of the proposed system is approximately 5%.

The cumulative distribution functions (CDFs) of the the aver-
age cell throughput (over scenarios) is shown in Fig. 2a for a lightly
loaded cell (8 users) and in Fig. 2b for a heavily loaded cell (32
users). Opportunistic beamforming with unquantized feedback is
compared to the proposed beamforming system with 0, 1, 3, or 5 bits
of feedback or unquantized feedback. Independently of the number
of users, only a single bit of feedback is needed to clearly outper-
form opportunistic beamforming (which requires log2(nT ) bits just
to feed back the index of the best beam). Using only one bit of
feedback, the proposed method achieves 48-56% of the unquantized
feedback gain, while three bits gives 90% and five bits 98-99%.

7. CONCLUSIONS

We have proposed a quantized channel norm feedback algorithm for
spatially correlated Rayleigh fading MIMO channels. A spectral
subspace decomposition framework was used to propose an SDMA
system that exploits the spatial dimensions using interference sub-
space suppression at the receivers and low-complexity greedy joint

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

 

 

Opp. BF
Proposed
Unquant

0,1,3,5 bits

(a) Cell throughput [bits/slot], 8 users.
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(b) Cell throughput [bits/slot], 32 users.

Fig. 2. The CDFs of the average cell throughput achieved in random
scenarios for different number of users and feedback bits.

scheduling and zero-forcing beamforming at the base station. An im-
portant feature of the system is that the choice of feedback parameter
does not inflict any limitations on the transmit beamforming.

Closed-form expressions for the first and second moments of the
quantized channel norm conditional channel statistics were derived
and used to achieve reliable rate estimation. Exploiting only feed-
back information and long-term channel statistics, the proposed sys-
tem outperforms opportunistic beamforming in the evaluated system
setting for any number of feedback bits. Just a few bits are needed
to achieve most of the gain compared to unquantized channel norm
feedback.
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