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ABSTRACT

A codebook based limited feedback strategy is a practical way to ob-
tain partial channel state information at the transmitter in a precoded
multiple-input multiple-output (MIMO) wireless systems. Construc-
tion of conventional codebooks, such as Grassmannian and Fourier
codebooks, relies on nonlinear search and iterative algorithms which
often does not exhibit structure to ease storage or online search com-
putation. Furthermore, multiple codebooks are needed to support
beamforming and spatial multiplexing. In this paper, we propose
a new codebook design based on Kerdock codes and mutually un-
biased bases which enjoys performance similar to previously known
codebooks. The proposed Kerdock codebook with quaternary alpha-
bet has systematic construction, reduced storage, and reduced online
search computation. Special structure in the codebook is used to de-
rive a spatial multiplexing codebook from multiple columns of the
beamforming codebook resulting in further storage reduction.

Index Terms— Array signal processing, MIMO systems, codes,
feedback communication.

1. INTRODUCTION

Codebook based limited feedback is a practical method to obtain
channel state information (CSI) at the transmitter in a multiple-input
multiple-output (MIMO) communication system [1]. Conventional
codebook design has focused on the achievable capacity and bit error
performance without fully addressing practical considerations such
as systematic construction, storage, and search complexity [1–5]. In
practical systems such as 3GPP long term evolution (3GPP-LTE),
multiple codebooks of different sizes are being considered which
further increases the storage requirements [6]. Furthermore, up to
300km/h mobility is being considered in 3GPP-LTE which necessi-
tates fast search for the optimum codeword. Thus, there has been
increasing interest in developing a codebook with structure to ease
the storage and search requirements. The central topic of this paper
is to connect Kerdock codes to limited feedback codebook design
and address practical considerations.

Conventional codebook designs such as Grassmannian [2], equi-
angular frames [7], and vector quantization (VQ) based [4] code-
books typically require extensive numerical search or iterative al-
gorithms to design the codebook. While the asymptotic capacity
and bit error performance as a function of codebook size have been
shown to be near optimal, the codebook usually does not exhibit any
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structure so that the codebook entries must be stored element by el-
ement. Furthermore, these codebooks requires an exhaustive online
search with complex-valued matrix computation. One structured
codebook is the Fourier based codebook based on unitary space-
time codes [8]. The Fourier based codebook only requires a gener-
ator matrix and a discrete Fourier transform (DFT) matrix to gener-
ate the codebook. Quantization still requires exhaustive search with
complex matrix computations. To minimize the storage and online
search complexity, a quadrature amplitude modulation (QAM) sym-
bol based codebook design was proposed [5]. This codebook is es-
sentially an element by element quantization of the optimal precoder
to the nearest QAM constellation with maximum likelihood lattice
decoding. Unfortunately, the codebook size is generally larger than
other codebook designs which makes it less attractive for practical
use.

In this paper, we propose to use Kerdock codebooks as a solu-
tion to the problem of practical limited feedback precoding in MIMO
systems. The Kerdock codebook is constructed using mutually unbi-
ased bases which is intimately related to Grassmannian packing and
equiangular frames [7, 9]. We consider the practicality of the code-
book by jointly considering 1) system performance, 2) construction
and storage requirements, and 3) online search efficiency. We show
that the Kerdock codebook can achieve performance comparable to
previously known codebooks with further benefits of systematic con-
struction, quaternary alphabet, reduced storage, and reduced search
complexity. Furthermore, we propose a new precoding codebook
for spatial multiplexing derived from the beamforming codebook
thereby further reducing the storage requirements.

For notation, we use lower case bold letters, e.g. v, to denote
vectors and upper case bold letters, e.g. H, to denote matrices. The
n×n identity matrix is denoted by In. The space of real and complex
are denoted by R and C, respectively with an appropriate superscript
to denote the dimension of the respective spaces. We use T and ∗ to
denote the transposition and Hermitian transpose, respectively.

2. SYSTEM OVERVIEW

In this section, we discuss the limited feedback precoded MIMO
system model, codebook selection criteria, and distance criteria con-
sidered in this paper.

We consider a limited feedback precoded MIMO wireless sys-
tem with Mt transmit antennas and Mr receive antennas. The trans-
mit bit stream is sent to the encoder and modulator, which outputs a
complex transmit vector, s[k] = [s1[k], s2[k], . . . , sMs [k]]T , where
k denotes the time index and Ms denotes the number of streams to be
sent. Beamforming is the special case for Ms = 1, and 1 < Ms ≤
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Mt for spatial multiplexing. We assume that Es[ss
∗] = Es

Ms
IMs in

order to constrain the average transmit power, where Es is used to
denote the expectation with respect to the transmit vector and Es is
used to denote the total transmit power.

The transmit vector s[k] is then multiplied by the unitary pre-
coder F (f for beamforming) of size Mt × Ms producing a length
Mt transmit vector x[k] =

√Es/MsFs[k]. The unitary precoder
F is selected based on the limited feedback information from the
receiver.

Assuming perfect synchronization, sampling, and a linear mem-
oryless channel, the equivalent baseband input-output relationship
can be written as

y[k] =

√
Es

Ms
HFs[k] + n[k] (1)

where H is the channel matrix with each entry independent and
identically distributed (i.i.d.) according to CN (0, 1) and n[k] is
the noise vector with each entry i.i.d. with distribution according
to CN (0, N0). The receive vector y[k] is then decoded by assum-
ing a perfect knowledge of HF at the receiver to produce the output
vector ŝ[k].

We assume that the receiver has the perfect estimate of the chan-
nel matrix H and uses a linear receiver which applies an Ms × Mr

matrix G to the receive symbol y[k]. For spatial multiplexing, the
zero-forcing (ZF) receiver is used which is given by G = (HF)†

with (·)† denoting the Moore-Penrose pseudo inverse. For beam-
forming, a maximum ratio combining (MRC) receiver is assumed
with G = (Hf)∗.

In this paper, the receiver chooses the unitary precoder F from
the codebook, F = {F1,F2, . . . ,FN}, of size N shared by the
transmitter and the receiver. The index of the selected codeword
at the receiver is fed back to the transmitter through a zero-delay
limited capacity feedback channel. The index of the codeword, n =
1, 2, . . . , N , is represented by b-bit binary (N = 2b) resulting in b
bits of feedback. We say that the codebook is b-bit codebook when
it has N = 2b entries.

For beamforming, the receiver finds the beamforming vector that
maximizes the effective SNR [2],

f = arg max
w∈F

‖Hw‖2. (2)

We will consider this selection criteria to determine the search com-
plexity associated with beamforming.

For spatial multiplexing, the minimum singular value selection
criteria (MSV-SC)

F = arg max
W∈F

λmin{HW} (3)

is used [3]. This selection criteria approximately maximizes the min-
imum substream SNR. We will consider this selection criteria to de-
termine the search complexity for spatial multiplexing.

We are also interested in deriving the spatial multiplexing code-
book from the beamforming codebook. For MSV-SC, the codebook
should be designed by maximizing the minimum pairwise projection
2-norm distance [3]. The projection 2-norm is defined as

dp2(F1,F2) = ‖F1F
∗
1 − F2F

∗
2‖ =

√
1 − λmin{F∗

1F2}.(4)

We will utilize this distance between codewords to derive the spatial
multiplexing codebook from the beamforming codebook.

3. KERDOCK CODEBOOK

Kerdock codes are known in coding theory community as a non-
linear binary code containing more codewords than any known lin-
ear codes [10]. They are constructed as binary images under the
Gray map of linear codes over Z4, the integer modulo 4, result-
ing in quaternary alphabet. A simplified Kerdock code construc-
tion was proposed in connection with CDMA signature sequence
and mutually unbiased bases (MUB) [11]. An MUB is a collection
of two or more orthonormal bases (ONB) with the property that the
members of different ONBs has the same correlation. That is, if
S =

[
s1 . . . sMt

]
and U =

[
u1 . . . uMt

]
are two Mt × Mt

ONBs (i.e. S∗S = IMt ), the inner product of vectors drawn from
each ONB satisfies, |〈sn,um〉| = 1√

Mt
, for n, m = 1, . . . , Mt.

The Kerdock code is a class of MUB which meets the Welch bound
equality (WBE) [9, 12] and it can be linked to equiangular frames
[7] and complex projective space [13]. The connection of Kerdock
codes with various limited feedback codebook designs were estab-
lished in [9]. We adopt the simplified construction in [11] and show
the utility of Kerdock codes for limited feedback precoded MIMO
systems.

3.1. Kerdock Codebook Construction

A Kerdock code consists of L, some power of two, orthonormal ma-
trices, Sn, n = 0, . . . , L − 1, where each Sn is a rotated Sylvester-
Hadamard matrix. The key to the construction is the algebraic deriva-
tion of the rotating (or generator) matrices, Dn, which does not rely
on any search. The general strategy for the Kerdock codebook con-
struction is as follows

1. Construct the diagonal matrices, Dn, for n = 0, 1, . . . , L−1.
These are the generator matrices.

2. Each bases is constructed by Sn = (1/
√

Mt)DnĤL where

ĤL is a size L × L Sylvester-Hadamard matrix.

3. Let F̂ =
[
S0 S1 · · · SL−1

]
.

4. For beamforming, each column of F̂ becomes the beamform-
ing vector f1, . . . , fN .

5. For spatial multiplexing, select specific column combination
based on its distance property to form the codebook.

Due to space limitations, please refer to [9, 11] for detailed deriva-
tion of the generator matrices, Dn. Having computed the set of Sn,
we arrange them into a codebook as follows. For beamforming, con-

struct the composite matrix, F̂ =
[
S0 S1 · · · Sn

]
and define

the codebook as the columns of F̂,

F = {f1 = [F̂]1, f2 = [F̂]2, . . . , fN = [F̂]N}, (5)

where [·]n is used to denote the selection of n-th column of a given
matrix. In [9], a construction method is proposed in which identity
matrix (non-quaternary) can be included in the codebook.

For spatial multiplexing, a subset of columns are selected from
each Sn to form the codebook. Notice that for a subset of columns
drawn from a single Sn, each column is orthogonal to each other be-
cause each Sn is an ONB. Hence, the design problem is to take a col-
umn subset from each Sn so that the minimum of pairwise distance
(4) is maximized. Specifically, for Ms stream spatial multiplexing
codebook, take all Ms-column subsets from each Sn. There are(

Mt

Ms

)
column subset combinations in each Sn. We select a unique

combinations from each Sn so that each column is used only once
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Table 1. Unitary precoding codebook for 2 streams derived from
the beamforming codebook. The column selection in the subscript
is chosen to maximize the pairwise projection 2-norm distance.

[S0]1,2 [S0]3,4 [S1]1,3 [S1]2,4

[S2]1,4 [S2]2,3 [S3]1,4 [S3]2,3

and that the pairwise distance is maximized using exhaustive search.
Using this construction, we can derive a size N/2 codebook for
Ms = Mt/2 and N = Mt codebook for Mt ≥ Ms > Mt/2 from
an N -entry beamforming codebook. We do not, however, claim op-
timality of the so constructed spatial multiplexing codebook.

3.2. Example: Four Transmit Antenna Construction

In this section, we provide the Kerdock codebook for Mt = 4 us-
ing the proposed construction. Our simulation results in Section 5
utilizes the codebook constructed in this example. For Mt = 4, we

have L = Mt = 4. Computing Sn = (1/
√

Mt)DnĤL yields

[
S0 S1

]
=

1

2

⎡
⎢⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 j −j j −j
1 1 −1 −1 j j −j −j
1 −1 −1 1 −1 1 1 −1

⎤
⎥⎦ ,

[
S2 S3

]
=

1

2

⎡
⎢⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 j −j j −j
j j −j −j 1 1 −1 −1
−j j j −j −j j j −j

⎤
⎥⎦ . (6)

For the beamforming codebook, we construct the composite matrix,

F̂ =
[
S0 S1 S2 S3

]
and define the codebook as the columns

of F̂. That is,

F = {f1 = [F̂]1, f2 = [F̂]2, . . . , fN = [F̂]16}, (7)

for a N = 16, 4-bit codebook.
For the 2-stream unitary precoding spatial multiplexing code-

book, we shall construct a 3-bit codebook. By selecting two columns
from each Sn and maximizing the distance (4) between every possi-
ble codeword pair, we find the column selections in Table 1, where
[·]x,y is used to denote the selection of the x-th and y-th column
of a given matrix. Similar procedure can be applied to obtain 2-bit
codebook for 3-stream spatial multiplexing. We have thus obtained
a quaternary alphabet codebook which can be used for both beam-
forming and spatial multiplexing.

4. CODEBOOK STORAGE AND SEARCH COMPLEXITY

In this section, we quantify the storage and search complexity of
the proposed Kerdock codebook and compare it with Grassmannian
and Fourier based designs.To estimate the storage requirements, we
consider the number of real elements (i.e. two real elements for one
complex value) to store a codebook. Let Nb denote the number of
bits available in the system to represent a real number.

The Grassmannian codebook [2,3] does not yield any systematic
construction so the entire codebook, element by element, must be
stored. Thus, the storage requirement is 2NbNMtMs-bits for each
codebook. The Fourier based codebook [8] requires the storage of

Table 2. Number of bits required for storing Kerdock, Fourier, and
Grassmannian codebooks for Mt = 4 and using N = 16 for beam-
forming and N = 8 for 2-stream spatial multiplexing. A system
dependent number of bits used to represent a real number is denoted
by Nb.

Kerdock Fourier Grassmannian

36 40Nb 256Nb

Table 3. Comparison of codeword selection computational require-
ment for the proposed design and equivalent Grassmannian and
Fourier codebooks

Beamforming Selection

Grassmannian or Fourier Kerdock

Multiply NMtMr 0

Addition NMr(Mt − 1) NMr(Mt − 1)

Spatial Multiplexing: MSV-SC

Grassmannian or Fourier Kerdock

Multiply NMtMrMs 0

Addition NMsMr(Mt − 1) NMsMr(Mt − 1)

one diagonal generator matrix (i.e. Mt complex entries) and Mt ×
Ms entries of a DFT matrix. The storage requirement for Fourier
based codebook is 2Nb(Mt + MtMs)-bits. Note that the storage
requirement is independent of the codebook size, N , because the
generator matrix is designed for a given codebook size.

The proposed Kerdock codebook requires storage of Mt × Mt

generator matrix elements, each represented by 2-bits, and 2 × 2
Sylvester-Hadamard matrix with binary entries. The total storage
requirement is thus 2M2

t + 4. Note that the storage for Kerdock
codebook is independent of the Nb used in the system. Furthermore,
the same codebook can be used for different modes of transmission
to further reduce the storage requirements.

For a fair comparison, Table 2 shows the number of bits required
to store the Kerdock, Fourier, and Grassmannian codebook for Mt =
4 using N = 16 for beamforming and N = 8 for 2-stream unitary
precoded spatial multiplexing. The Kerdock codebook results in a
significant storage savings.

For search complexity, we will consider the number of arith-
metic computation required to arrive at the desired codeword. Since
the norm and singular value computations are common for all code-
book entries, we compare the computation required to compute Hf
for (2) and HF for (3) for each codeword in the codebook. For
the Grassmannian and Fourier codebooks, the entries of f and F
are complex valued thus requiring complex multiplies and additions.
The Kerdock codebook, though, has entries {±1,±j} which re-
duces the complex multiplications to a sign change or swapping the
real and imaginary parts. Therefore, the Kerdock codebook effec-
tively achieves multiplier-less computation of Hf and HF.

Table 3 shows the required number of arithmetic computation
at the receiver for codeword selection. The reduced computational
cost and compact storage properties of Kerdock codebook makes it
an attractive solution for implementation.

5. SIMULATION RESULT

In this section, we give numerical simulation results comparing 1)
vector symbol error rate (VSER) performance of limited feedback
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Fig. 1. VSER performance of Mt = Mr = 4 beamforming system
using 256-QAM with all codebooks of size N = 16 and VSER per-
formance of Mt = Mr = 4 unitary precoded spatial multiplexing
system using 64-QAM with all codebooks of size N = 8.

beamforming system, and 2) VSER performance of two stream uni-
tary precoded spatial multiplexing system for equal size Grassman-
nian, Fourier, Kerdock codebooks, and ideal beamforming and spa-
tial multiplexing using perfect CSI. All simulations are performed
for Mt = Mr = 4 assuming delay-free feedback. No forward error
correction is used.

The VSER performances are shown in Fig. 1. The case for per-
fect CSIT are also shown for reference. For beamforming, the Ker-
dock codebook yields performance indistinguishable from Grass-
mannian and Fourier codebooks. For spatial multiplexing, the Ker-
dock codebook outperforms the Fourier codebook, but is marginally
worse than the Grassmannian codebook. Therefore, the Kerdock
codebook provides comparable performance with same size Grass-
mannian and Fourier codebooks. This is remarkable considering the
fact that the codebook only has quaternary alphabet.

6. CONCLUSION

In this paper, we proposed to use Kerdock codes for limited feedback
precoded MIMO systems. The Kerdock codebook has quaternary al-
phabet, systematic construction, reduced storage requirements, and
results in a reduced computational search. We proposed a method to
derive spatial multiplexing precoders from the beamforming code-
book. The mutually unbiased bases structure of the Kerdock code-
book enabled the codebook derivation leading to an extra storage
savings. We presented numerical simulation results which showed
that the Kerdock codebook provides performance comparable or bet-

ter than previously known codebooks. We also showed that Kerdock
codebook results in significant storage and search savings. More re-
sults and proofs are provided in [9]. One limitation of the proposed
design is the limited number of codewords in a given codebook. Fu-
ture work will consider possible extension to multiuser MIMO sys-
tems, MIMO-OFDM systems, and applicability to correlated chan-
nel scenarios.
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