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ABSTRACT

We present a quantized precoding scheme for the V-BLAST sys-
tem. The precoding matrix is decomposed into the multiplication of
a beamforming matrix and a power allocation matrix. They are ob-
tained by solving an optimization problem that maximizes the min-
imum post-detection SINR of the MMSE-SIC receiver under a total
power constraint. The beamforming matrix is constrained to be in
a predetermined codebook. We show that the precoder of UCD-
VBLAST happens to be the optimal solution of the problem. There-
fore, the proposed scheme can be regarded as a natural but nontrivial
limited feedback version of UCD-VBLAST. Simulation results are
presented to demonstrate the effectiveness of the proposed scheme.

Index Terms— V-BLAST, MMSE-SIC, beamforming, power
allocation, limited feedback

1. INTRODUCTION

Multiple antennas are being considered for high data rate services
on rich scattering wireless channels because they promise high spec-
tral efficiencies. The Vertical Bell Laboratories Layered Space-Time
(V-BLAST) architecture was designed to take the spectral efficiency
advantage of the multiple-antenna system [1]. It has been demon-
strated to be able to exploit the potentially enormous MIMO link
capacity.

When perfect channel state information (CSI) is available at the
transmitter, the V-BLAST system can be optimized to increase spec-
tral efficiency or enhance the link reliability. Linear precoding is a
simple and effective means to accomplish either or both of the two
goals. An efficient linear precoding approach based on the uniform
channel decomposition (UCD) was proposed in [2]. By combin-
ing the UCD channel decomposition and minimum mean square er-
ror successive interference cancellation (MMSE-SIC) receiver, the
UCD-VBLAST1 decomposes a MIMO channel into multiple iden-
tical parallel subchannels. The UCD-VBLAST has been proved to
be optimal in terms of both spectral efficiency and link reliability
aspects. However, despite the capability of UCD-VBLAST, it as-
sumes that the transmitter has perfect CSI, which is often unreal-
istic. In some practical systems, the CSI is sent to the transmitter
through a feedback channel whose capacity is limited. In order to
overcome this difficulty, we propose a limited feedback version of
UCD-VBLAST, which is denoted as QUCD.

Limited feedback design has been explored in [3, 4, 5, 6] for
single-stream beamforming and proposed in [7, 8, 9] for multiple-
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1For convenience, the nonlinear transceiver proposed in [2] will be re-
ferred to as UCD-VBLAST in this paper.

stream precoding. The basic idea behind limited feedback is to se-
lect the precoding matrix at receiver from a predetermined finite-
element codebook according to some criterion. After that, the index
of the selected matrix is sent to the transmitter through the finite rate
feedback channel. Previous work on limited feedback has primar-
ily focused on either maximizing the information rate or minimiz-
ing the error rate, hence, there is an apparently inevitable tradeoff
between the information rate and error rate if the same coding and
symbol constellation is used on different data streams. In this pa-
per, we will introduce the QUCD scheme and clarify that there is not
necessarily a tradeoff between information rate and error rate. In-
deed, the QUCD scheme attempts to achieve the best of both worlds
simultaneously. In the proposed QUCD scheme, the index of the
selected beamforming matrix is sent to transmitter through the feed-
back channel. The power allocation matrix is a real diagonal matrix,
and hence its elements can be simply scalar quantized and feedback.

2. BACKGROUND

We consider a communication system with NT transmit antennas
and NR receive antennas in a block Rayleigh flat fading channel. At
the transmitter, the input binary data stream is demultiplexed into M
data streams, each of which is coded and modulated independently.
Let x = [x1, · · · , xM ]T be the modulated data symbol vector with
a covariance matrix E{xxH} = I , where I is the identity matrix
of proper dimensions. The complex baseband system model can be
represented by

y = HGx + z = HF
√

Qx + z (1)

where y = [y1, · · · , yNR ]T is the received signal vector; z =

[z1, · · · , zNR ]T is the additive white Gaussian noise vector, with
E{zzH} = σ2I ; H is the NR × NT channel matrix, whose
elements hij are assumed to be i.i.d zero-mean complex Gaus-
sian variables with unit variance. We assume that the channel can
be accurately estimated at the receiver. G is the NT × M lin-
ear precoding matrix satisfying the total transmit power constraint
trace(GGH) ≤ P0. The linear precoding matrix can be decom-
posed into the multiplication of a beamforming matrix and a power
allocation matrix, i.e., G = F

√
Q, where F = [f1, · · · , fM ]

is the beamforming matrix; each column vector fi is the beam-
forming vector of the i-th data stream and ‖fi‖ = 1; Q =
diag [q1, q2, · · · , qM ] and

√
Q = diag

[√
q1,

√
q2, · · · ,

√
qM

]

in which qi ≥ 0 is the transmission power of the i-th data stream . A
noiseless zero-delay feedback channel with limited capacity is used
to convey information to the transmitter.

Next we give a brief overview of MMSE-SIC receiver for the
V-BLAST system. Suppose that the successive interference cancel-
lation is ideal, i.e., there is no error propagation. Without loss of
generality, we also assume that stream M is detected first and stream
1 is detected at last. At detection stage k, the receiver attempts to
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recover the transmitted data of stream k. The ideal interference can-
cellation implies that stream k suffers from the interference of later
streams 1, · · · , k − 1 only and the interference of earlier streams
k + 1, · · · , M has been cancelled. Since the data symbol vector x
and the noise z are independent, the covariance matrix of the inter-
ference plus noise suffered by stream k is given as

Rk = σ2I +

k−1∑

i=1

qiHfif
H
i HH

(2)

A linear filter uk is applied to suppress the interference and noise
suffered by stream k. Thus, the post-detection SINR of the k-th
detection stage is specified by

SINRk(F, Q) =
qk|uH

k Hfk|2
uH

k Rkuk
(3)

The parentheses with enclosed arguments indicate that the post-
detection SINR is a function of both the beamforming matrix F
and power allocation matrix Q. For a MMSE-SIC receiver, uk is
designed according to the MMSE criterion and is given by

uk(F, Q) =
√

qk(Rk + qkHfkfH
k HH)−1Hfk (4)

Substituting this uk into Eq. (3), followed by some straightforward
algebraic manipulations, one gets

SINRk(F, Q) = qkfH
k HHR−1

k Hfk = qkfH
k Zkfk (5)

where Zk
def
= HHR−1

k H and by matrix inversion lemma, we have

Zk+1 = Zk − qkZkfkfH
k ZH

k

1 + qkfH
k Zkfk

(6)

In a word, the MIMO channel is converted into a set of parallel sub-
channels and the SNR of the k-th subchannel is SINRk.

3. UNQUANTIZED PRECODING MATRIX DESIGN

3.1. Problem Formulation

As shown in [10], the MMSE-SIC receiver can achieve the capacity
of the MIMO channel. However, in order to achieve this capacity,
one has to use a different combination of constellation and coding
on each individual stream, since the SINRs of the subchannels are
different from each other. As a result, significant complexities to
the modulation/demodulation and coding/decoding procedures are
introduced. To reduce the complexity, the system can be constrained
to use the same constellation and coding scheme on each of the
streams. In this alternative scenario, the BER performance is lim-
ited by the subchannel with the minimum SINR. In other words, the
link reliability is dominated by the worst-case subchannel. Hence,
rather than maximizing the mutual information, we design the beam-
forming matrix F and power allocation matrix Q to maximize the
minimum SINR of all subchannels.

The minimum SINR of all subchannels can be maximized by
solving the optimization problem

max
F ,Q

min
k

SINRk(F, Q) (7)

s.t. trace(Q) ≤ P0 and F ∈ F
where F is a codebook containing N candidate beamforming matri-
ces that is stored at both the transmitter and the receiver. The code-
book is denoted as F = {F1, · · · , FN}, and each column of Fi is
of unit norm.

By introducing a slack variable, we can recast the optimization
problem (7) as

max
F,Q,ρ

ρ (8)

s.t. SINRi(F, Q) ≥ ρ, 1 ≤ i ≤ M

trace(Q) ≤ P0 and F ∈ F
It is easy to verify that (7) and (8) are equivalent.

3.2. Characterization of the Optimal Solution

We have formulated the precoder design problem to enhance the link
reliability. It happens that the optimal solution of the problem (8)
is also optimal in the sense of capacity maximization as stated in
Theorem 1 below. Before getting into the theorem, we will first
present a lemma which is necessary for the proof of the theorem.

Lemma 1 Suppose that (F ∗, Q∗, ρ∗) is an optimal solution of (8),
then the constraints SINRi(F

∗, Q∗) ≥ ρ∗, i = 1, · · ·M are all
active, i.e., SINRi(F

∗, Q∗) = ρ∗. Furthermore, ρ∗ is continuous
and strictly monotonic increasing in P0.

Proof: The proof of the first part is straightforward, and hence
is omitted here.

To prove the monotonic property of ρ∗, assume that P ′
0 > P0.

The optimal solution under the total power constraints P ′
0 and P0

are (F ′, Q′, ρ′) and (F ∗, Q∗, ρ∗), respectively. There exists c > 1
such that cP0 < P ′

0 and accordingly

ρ′ ≥ min
k

SINRk(F ∗, cQ∗) > ρ∗
(9)

where the second inequality is due to the fact that SINRk(F , cQ∗)
is a strictly monotonic increasing function of the positive scalar c.

The continuity can be shown by noting that a small increment
ΔP0 can at most result in an increase of ρ∗ by

Δρ ≤ ΔP0f
H
1 HH(σ2I)−1Hf1 ≤ ΔP0λ1

where λ1 is the principal eigenvalue of HH(σ2I)−1H .
By Lemma 1, the capacity achieved by the MMSE-SIC receiver

is then
CMMSE−SIC(F ∗, Q∗) = M log2(1 + ρ∗)

i.e., the MIMO channel is decomposed into M subchannels with
identical capacities. The main result of this section is stated below.

Theorem 1 If F = {F | each column of F is of unit norm} and
M ≥ rank(H), then the optimal solution of (8) is also optimal in
the sense of capacity maximization, i.e.,

CMMSE−SIC(F ∗, Q∗) = Copt

where Copt is the capacity of the given channel.

Proof: Denote the precoding matrix of UCD-VBLAST as
GU and it can always be decomposed as GU = FU

√
QU so that

(FU , QU , ρU ) is a feasible solution to (8), where ρU is the SINR
of the identical subchannels in UCD-VBLAST. As a result, we have
ρ∗ ≥ ρU . On the other hand, it has been shown in [2] that the UCD-
VBLAST is strictly capacity lossless, i.e., CU = M log2(1+ρU ) =
Copt. Since ρ∗ ≥ ρU , we have

Copt ≥ M log2(1 + ρ∗) ≥ M log2(1 + ρU ) = Copt (10)

which implies that CMMSE−SIC(F ∗, Q∗) = M log2(1 + ρ∗) =
Copt and ρU = ρ∗.
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The result of Theorem 1 does not necessarily guarantee the ca-
pacity optimality of limited feedback. However, as the size of the
codebook getting large, the capacity will approach to that of perfect
feedback. Actually, a not so large codebook will be suffice to achieve
a significant portion of the capacity gain achieved by perfect feed-
back. In summary, the feedback scheme is proposed to enhance link
reliability, and at the same time significant capacity gain can also be
obtained.

3.3. The Solution

The optimization problem in (8) maximizes the minimum post-
detection SINR jointly with respect to F and Q under the total
power constraint. For any given F , the problem (8) can be reduced
to

max
Q,ρ

ρ (11)

s.t. SINRk(F, Q) ≥ ρ, 1 ≤ k ≤ M

trace(Q) ≤ P0

It is worthy noting that the properties stated in Lemma 1 still hold for
problem (11), i.e., SINRk(F , Q∗) = ρ∗ and ρ∗ is continuous and
strictly monotonic increasing in P0, where (Q∗, ρ∗) is an optimal
solution of the problem (11). As a result, the optimal solution of
(11) can be found by solving

SINRk(F , Q) = qkfH
k Zkfk = ρ, k = 1, · · ·M (12)

for Q at different values of ρ until we get trace(Q) = P0. The
strict monotonicity and continuity guarantee that ρ∗ can be found
efficiently by a one-dimensional bisection search. In short, the prob-
lem (8) can be solved by enumerating all beamforming matrices in
the codebook and solving (11). The one that achieves the maximum
ρ is the optimal solution to (8). The algorithm is summarized as
follows.

Algorithm I:

• initialization: ρ∗ = 0, F ∗ and Q∗

• for each F ∈ F do

– initialization: ρmin, ρmax, ε, P̂0 = 0

– while (|P0 − P̂0| > ε) do
∗ ρ = (ρmin + ρmax)/2, Z1 = HH(σ2I)−1H

∗ for data stream k = 1 to M do

qk = ρ/(fH
k Zkfk)

Zk+1 = Zk − qkZkfkfH
k ZH

k

1 + qkfH
k Zkfk

∗ end for
∗ P̂0 =

∑M
i=1 qi; if P̂0 < P0, ρmin = ρ,

otherwise ρmax = ρ;

– end while
– if ρ > ρ∗, then F ∗ = F , Q∗ = Q, ρ∗ = ρ.

• end for
The innermost loop solves equations (12) and ρ is given by the outer
“while” loop. The outer “while” loop is a one-dimensional bisection
search to find the ρ∗ such that trace(Q) = P0. ρmin and ρmax

define the range in the search of ρ. The outermost loop enumerates
all beamforming matrices in F .

4. SIMULATION AND DISCUSSION

In this section we present results from extensive simulations to
evaluate the performance of the proposed limited feedback scheme.
QPSK modulation with Gray mapping is employed during the sim-
ulation. The channel is assumed to be Rayleigh flat fading channel.
We consider a MIMO configuration with four transmit antennas and
four receive antennas, i.e., NT = NR = 4. The number of data
streams is M = NT = 4. Each data stream is coded independently
by a 1/3 rate turbo encoder(for the details of the turbo encoder
please refer to [11]). The use of turbo encoding in the simulation
can reduce the effect of error propagation so that we can focus on
the effect of limited feedback. A turbo encoding block consists of
320 uncoded bits. Suppose that the channel is quasi-static, i.e., it
remains unchanged during the transmission of a single block but
varies independently from block to block.
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NT = 4, NR = 4, i.i.d Rayleigh fading channel
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no feedback

Fig. 1. BER performance of the proposed feedback scheme and
UCD-VBLAST. Power allocation information is fed back perfectly.

In the first simulation scenario, we assume that the power allo-
cation matrix Q is fed back perfectly and we do not take into ac-
count the feedback amount needed to feed back Q. Fig. 1 shows the
BER performance of a V-BLAST system with the proposed feedback
scheme. The performance of the UCD-VBLAST and V-BLAST
without feedback is also given for comparison. Receiver for the latter
is MMSE-SIC with optimal ordering [1]. The codebooks are gener-
ated randomly. As can be seen in the figure, the performance of 8-bit
QUCD is within 0.9 dB compared with that of the UCD-VBLAST.
Using 8-bit QUCD instead of 4-bit QUCD provides about 0.6 dB
gain. Also, we note that even 2-bit QUCD provides more than 4.0
dB gain over V-BLAST without feedback at BER of 10−5. Fig. 2
plots the average channel capacity versus SNR for various feedback
schemes. For a low SNR, there is a significant SNR gain of around
3.0 dB between UCD-VBLAST and no feedback. A large portion
of feedback gain is achieved by 8-bit QUCD. The feedback gain di-
minishes at a high SNR, which is also true for UCD-VBLAST.

The effect of the quantized power information feedback is eval-
uated in the second simulation scenario. The power of each data
stream is compressed by the μ-law non-linear quantizer individually.
The performance of 12-bit, 16-bit and 20-bit power quantization is
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Fig. 2. Average capacity of the proposed feedback scheme and
UCD-VBLAST. Power allocation information is fed back perfectly.

evaluated. Fig. 3 shows the BER of 4-bit QUCD along with quan-
tized power feedback. It can be seen that 20-bit power feedback
incurs almost no performance loss compared to the perfect power
feedback. It is striking that 4-bit QUCD along with the 12-bit power
feedback provides more than 4.0 dB gain at BER of 10−5 over V-
BLAST without feedback. The total feedback amount is 16 bits (4
bits/stream), which is affordable by future wireless systems [12].

5. CONCLUSION

In this paper, quantized linear precoding for the V-BLAST system
with a MMSE-SIC receiver is studied. The beamforming and power
allocation matrices are designed to maximize the minimum SINR
of the MMSE-SIC receiver. We show that if the matrices can be
feedback perfectly, the precoder is optimal in terms of both spectral
efficiency and link reliability aspects, i.e., it is equivalent to UCD-
VBLAST. Consequently, the proposed limited feedback scheme is a
natural but nontrivial extension of UCD-VBLAST. The simulation
results show that limited feedback can achieve a large portion of the
capacity gain and significantly decrease the BER at the same time.
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