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ABSTRACT

In this paper, we assess the impact of CSI quantization on the
performance of the Orthogonal Random Beamforming scheme. By
resorting to a dynamic programming formulation, one can identify
the optimal (i.e. pdf-matched) quantizer for which the sum-rate dis-
tortion is minimized. The robustness of such quantization scheme
to uncertainty in the knowledge of specific system parameters along
with the benefits resulting from inclusion of a second (and more re-
fined) quantization step are analyzed as well. The performance, in
terms of the resulting sum-rate, for this optimal quantizer is also as-
sessed by means of computer simulations. Throughout this paper, a
uniform quantizer is used as a benchmark.

Index Terms: multi-user diversity, scheduling, quantization, ran-
dom beamforming.

1. INTRODUCTION
In a context of Multiple-Input Multiple-Output (MIMO) Broadcast
Channels, Dirty Paper Coding (DPC) is known to be the capacity-
achieving strategy [1]. However, DPC is computationally intensive
and requires full channel state information at the transmitter (CSIT).
In terms of sum-rate, however, there exist other precoding schemes
such as Transmit Zero-Forcing (TxZF) beamforming [2] or Orthog-
onal Random Beamforming (ORB) [3] which asymptotically (in the
number of active users) yield the same growth rate as DPC and, still,
have lower computational complexity or merely require partial CSIT
(i.e. SINRmeasurements). Multi-user diversity [4] can be efficiently
exploited by the aforementioned transmit schemes but, to that aim,
the centralized scheduler must be provided with at least partial CSI
in order to make sure that the users experiencing the most favorable
channel conditions are scheduled in each time instant.

In the literature, one can find a number of approaches aimed at
minimizing the amount of CSI to be fedback by the (potentially high
number of) terminals. In [5], for instance, the BS repeatedly polls the
active users with a set of decreasing feedback thresholds; only those
users which are above one of the thresholds (ideally a single user)
convey their measured SINRs to the BS. The authors in [6] instead,
propose a two-step feedback scheme: first, the scheduler decides on
the active user subset on the basis of partial CSI (the SINRs result-
ing from a set of orthogonal random beams) which is conveyed by
all theK users in the cell; next, full CSI is requested from the subset
of scheduled users (M , with M << K) in order to construct a set
of MMSE transmit beamformers. This scheme is particularly well-
suited for sparse networks (i.e. with a moderate number of users)
where ORB by itself would have difficulties in identifying a subset
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of quasi-orthogonal users. However, the above mentioned schemes
assume that CSI is made available in analog form (i.e. infinite pre-
cision). In practice, CSI (either partial or full) must be quantized
before being conveyed over a feedback channel. In this direction,
[7] explores how to allocate L feedback bits (per user) in such a way
that both multi-user diversity gains (resulting from roughly quan-
tized channel quality information) and beamforming gains (result-
ing from the use of one beamvector out of those in a pre-designed
codebook). In an ORB context, the limiting case of one-bit quan-
tizers for the SINRs was addressed in e.g. [8], where the quantizer
was designed in such a way that sum-rate of the quantized system
retains the same growth rate as that of the analog one for a (very)
large number of users. For a practical number of users, though, such
design criterion may result in severe performance degradation.

Continuing our work in [9], we focus here on optimal (i.e. pdf-
matched) quantization schemes with an arbitrary number of quanti-
zation levels (rather than only two as in [8]) for ORB. We comple-
ment [10] by addressing the multi-user (i.e. multi-beam) case instead
of the single-user case and, unlike [10], we resort to numerical meth-
ods [11] which always converge to the optimal quantizer. As long as
the pdf-matched quantizer depends a number of system parameters
like the number of active users or the average SNR (which could be
time-varying or be estimated with limited accuracy), we assess the
robustness of the proposed quantization scheme to uncertainty in the
knowledge of those parameters. In addition, we analyze the impact
of a two-step quantization scheme by which the scheduling process
is conducted on the basis of roughly quantized (1 bit) CSI, whereas
the rate of the scheduled users is finely adjusted by using refined CSI
information sent later by those users only.

2. SIGNAL MODEL
Consider the downlink of a wireless system with one Base Station
(BS) equipped with M antennas, and K single-antenna terminals.
In order to serve multiple users, we generate a pre-coding matrix
W = [w1,w2, ...,wM ][3], the columns of which, wi ∈ C

M×1,
i = 1..M , are isotropically-distributed random orthonormal vectors
. Each of those vectors is then used to transmit data to the users expe-
riencing the highest SINRs. The received signal at the k-th terminal
when using beamformer i at the BS can be expressed as (time index
has been dropped for the ease of notation):

rk,i = hT
k wisi +

M∑
j=1
j �=i

hT
k wjsj + nk (1)

where sj stands for the symbol transmitted with beam j, hk ∈
C

M×1 is the channel vector gain between the BS and the k-th termi-
nal hk ∼ CN (0, IM ) (block Rayleigh fading, assumed to be i.i.d.
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over users), and nk ∈ C denotes additive Gaussian noise (AWGN)
with zero mean and variance σ2. Concerning CSI, we assume perfect
knowledge at the terminals and the availability of a low-rate error-
and delay-free feedback channel to convey partial CSI to the trans-
mitter. Finally, the total transmit power, Pt, is constant and evenly
distributed among the active beams, i.e., E{sHs} = Pt and, hence,
we can define ρ = Pt

σ2 as the average SNR.
The last two terms in (1) clearly account for the interference-

plus-noise contribution and, hence, the corresponding SINR mea-
sured at the terminal reads:

γk,i =
|hT

k wi|2
M/ρ +

∑M
j=1
j �=i

|hT
k wj |2

=
z

M/ρ + y
(2)

The scheduler in the BS operates in a slot-by-slot basis following a
max-SINR (greedy) rule. That is, for beam i, the scheduler selects
the active user k∗

i satisfying

k∗
i = arg max

k=1..K
{γk,i} i = 1 . . . M

which experiences a post-scheduling SINR given by:

γ∗
i = max

k=1..K
{γk,i} i = 1 . . . M

As shown in [3], the pdf function of such random variable reads

fSINR∗(γ) = K
e
− γM

ρ

(1 + γ)M

M

ρ
(1 + γ) + M − 1

×
 

1 − e
− γM

ρ

(1 + γ)M−1

)K−1

. (3)

Finally, one can readily express the sum-rate R in terms of the pdf
above as:

R ≈ Eγ∗

[
M∑

i=1

log2 1 + max
1≤k≤K

γk,i

]

= M

∫ ∞

0

log2 (1 + γ) fSINR∗(γ)dγ (4)

In a realistic scenario, the BS is constrained to schedule users on the
basis of a quantized version of the measured SINRs,Q(γk,i), rather
than with the analog SINRs in the expressions above. This issue
will be addressed in the next section where we introduce the optimal
quantization strategy.

3. REVIEW OF OPTIMAL QUANTIZATION STRATEGIES
Let Γd = {γd0 < γd1 < . . . < γdNq

} be the input decision levels
and let Γq = {γq0 < γq1 < . . . < γqNq−1} be the output represen-
tative levels of an Nq = 2Lq -level quantizer Q(·) defined as:

Q(γ) = γqj if γdj ≤ γ < γdj+1 . (5)

Hence, the (quantized) post-scheduling SINR on beam i reads :

max
k=1..K

{Q (γk,i)} i = 1 . . . M

or, equivalently, by exchanging themax and Q operators1

Q max
k=1..K

{γk,i} = Q (γ∗
i ) i = 1 . . . M

1Although the resulting quantized SINR is identical, a different selection
of users may result from this change.
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Fig. 1. Optimal decision levels of the post-scheduling SINR.

Thus, the problem to solve is that of identifying an optimal (i.e. pdf-
matched) set of decision and representative levels {Γ∗

d, Γ∗
q}, such

that the average distortion introduced by the Nq-level quantizer:

DNq = Eγ∗ [e (γ∗, Q(γ∗))]

=

N−1∑
i=0

∫ γdi+1

γdi

e (γ, γqi) fSINR∗(γ)dγ (6)

is minimized, with e(·, ·) standing for an error weighting function of
choice. Since the optimally-quantized SINRs should minimize the
sum-rate distortion (4), we define the error function as

e(γ, γqi) = log2(1 + γ) − log2(1 + γqi) = log2

1 + γ

1 + γqi

In general, this problem cannot be solved analytically. Alterna-
tively, one can resort to a dynamic program formulation [11] and
obtain a numerical solution, which can be proved to be the global
optimum[11]. In this context, we define two functionsD1(α, β) and
Dn(α, β) in the following way: first, let D1(α, β) denote the min-
imum value of the distortion measure when placing just one output
level in the range (α, β), a subrange of (γd0 , γdNq

):,

D1(α, β) � min
y

∫ β

α

e (γ, y) fSINR∗(γ)dγ. (7)

Next, Dn(α, β) is defined as the minimum distortion when n levels
are place in (α, β), for n ≥ 2. Such distortion term can be conve-
niently expressed in terms of (7) as follows:

Dn(α, β) = min
γd1 ,...,γdn−1

(α<γd1 ...<γdn−1<β)

n−1∑
i=0

D1(γdi , γdi+1) (8)

where γd0 = α and γdn = β. Notice that γdi and γqi denote the
interim search variables whereas their optimal counterparts will be
labeled with the subscript ∗. The search algorithm consists of the
following five steps:
1. Initialization: Compute and store the values ofD1(α, β) for
all discrete α and β in (γd0 , γdNq

). To do so, we assume
Nq ,γd0 and γdNq

to be set in advance.
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2. Insertion of decision levels: For each n from two to Nq and
all discrete γ in (γd0 , γdNq

), compute and store both

Dn(γd0 , γ) = min
α

γd0<α<γ

[Dn−1(γd0 , α) + D1(α, γ)]

and γdn(γd0 , γ), which denotes the optimum value of α for
whichDn(γd0 , γ) is minimized. By doing so, we identify the
best point to insert an additional decision level in (γd0 , γ).

3. Computation of the optimal decision levels: For each n
from Nq to two, set

γ∗
dn−1 = γdn−1(γ

∗
d0 , γ∗

dn
) (9)

with γ∗
dNq

= γdNq
and γ∗

d0 = γd0 .

4. Computation of the optimal representative levels: In gen-
eral, one should compute for each n from zero toNq − 1, the
optimal γ∗

qn
for whichD1(γ

∗
dn

, γ∗
dn+1

) is the minimum value
as given in (7). However, we impose here γqi = γdi ; i =
0 . . . Nq−1. In this way, we ensure that the quantized SINRs
(the ones used to adjust the constellation size and the coding
scheme at the transmitter) are never above the actual SINR
value. Otherwise, the estimated data rate would exceed that
which can be reliably supported and an outage would result.

5. End of algorithm.
In Fig.1, we show the optimal decision levels associated to the post-
scheduling pdf in Eq.3. Qualitatively, the optimal decision thresh-
olds should be placed where the pdf takes non-zero values. For a
growing number of users, this results in an overall shift towards high
SINR values, which are more likely to occur.To conclude this sec-
tion, notice that we are facing a cross-layer design in the sense that
the optimal quantizer in the physical layer is tightly coupled with
system-level parameters (introduced through fSINR∗ in Eq.6), such as
the number of admitted users (K) or the number of antennas in the
base station. Such system-level parameters should then be broad-
casted to the user terminals in the cell through common signalling
channels. As for the optimal decision levels, they should be pre-
computed and stored (for a limited set of input parameters) at the
terminal in order to avoid costly on-line computations.

3.1. A two-step quantization strategy
The overall performance could be improved if we introduce a refine-
ment in the quantization step. In particular, we propose to improve
the process by asking the scheduled users only to subsequently pro-
vide the BS with a finely quantized version of the measured SINR.
In this way, we restrict the impact of the roughly quantized CSI to
the scheduling process, whereas the actual data rate in the downlink
can be more accurately determined on the basis such finely quan-
tized SINRs. In settings where only few terminals out of a relatively
large population of users are selected for transmission, the increase
in terms of signalling resulting from this dedicated feedback is po-
tentially low (although this refinement would also imply some addi-
tional delay). The impact of this refinement will be assessed next.

4. COMPUTER SIMULATION RESULTS
We consider a system withK = 1 . . . 1000 active users and one BS
with M = 4 antennas. In Fig.2, we assess the performance of the
optimal quantizer and compare it with that of (1) a uniform quantizer,
and (2) a system where SINRs have analog precision (i.e. lower and
upper bounds). First, we can observe that the performance exhibited
by the optimal quantizer with Lq = 3 bits is very close to that of
the analog system: 6.03

6.71
= 90% and 12.92

13.61
= 95% for the K = 20
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Fig. 2. Sum-rate vs. number of users with analog and quantized CSI.
Interference-limited scenario (ρ=20 dB).
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Fig. 3. Optimal and uniform decision thresholds vs. the number of
active users. Dash-dotted curve: 99% percentile of dynamic range.

and K = 1000 cases, respectively . With Lq = 1 quantization
bits, the system still manages to retain up to 3.84

6.74
= 57% of the

analog performance for K = 20 (and 10.19
13.60

= 75% for K=1000).
In summary, the optimal quantizer adapts quite well to the different
pdf shapes resulting from different values ofK and ρ.

Besides, the pdf-matched quantizer clearly outperforms its uni-
form counterpart in all cases and scenarios. The performance loss
of the uniform quantizer is more severe in the Lq = 1 bit case: up
to 3.84−0.71

3.84
= 81.5% and 10.19−1.89

10.19
= 81.4% w.r.t. the opti-

mal quantizer for the K = 20 and K = 1000 cases, respectively.
The fact that performance relies on the value that the single deci-
sion level takes, makes it very sensitive to non-optimal designs. This
can be observed in Fig.3 where we depict both the optimal and uni-
form decision levels for a varying number of active users. In the
Lq = 3 case, there is a substantial overlap between both sets of de-
cision thresholds and, hence, the uniform quantizer performs reason-
ably well. On the contrary, a severe performance loss results from
the gap between the optimal and uniform decision thresholds for the
Lq = 1 case. Still, the overlap between the optimal and uniform de-
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Fig. 4. Sensitivity of the optimal quantizer to parameter mismatch
(ρ=10 dB). Results are normalized in both axes.

cision levels strongly depends on parameters such as ρ or K and in
some cases (e.g. ρ = 0, K = 1000) the gap between both curves is
relatively small. However, only the optimal quantizer can guarantee
close-to-analog performance in a general case. Next, in Fig. 4 (top)
we illustrate the impact of a mismatch in the number of active users
on the resulting sum-rate of the optimal quantizer. Clearly, the lower
the number of decision levels, the faster performance degrades with
an increasing mismatch (with only one threshold to rely on, any shift
from the optimal value is critical). Besides, one can also observe that
performance loss is negligible, less than 10%, when the algorithm
is parameterized by Kmis within 0.5..2 times the number of actual
usersK. In other words, the quantization scheme is quite robust and,
hence, there is no need for the BS to continuously broadcast updates
in system-level parameters. As for the sensitivity to imperfect es-
timates of ρ, Fig. 4 (bottom) reveals that the quantization scheme
is quite robust too: less than 10% performance loss within ±3 dB.
Interestingly enough, for higher values of ρmis/ρ performance still
degrades quite gracefully. The explanation for this behavior can be
found in equation (3): for a given number of active users increas-
ing ρmis results into a wider pdf function but, still, the central parts
(where the decision intervals lie) of the pdfs parameterized by ρ and
ρmis notably overlap with each other. Conversely, by substantially
increasing K (for a given ρ) we force the pdf curves to shift their
central (i.e. non-zero values) far away from each other, this result-
ing into substantial performance losses in the high Kmis/K region.
Finally, in Fig. 5, we compare the performance of the schemes with
and without dedicated feedback for the scheduled users only. For the
latter case, we assume that a sufficient number of bits to have close-
to-analog quality are used in the refined quantization step (typically
Lq = 4 bits suffice). Clearly, a substantial improvement results
when in the rough quantization step we use 1 or 2 quantization bits
( 9.29
8.23

= 113% and 10.1
9.6

= 106%, respectively). However, the gain
is much more moderate when Lq = 3 since, after all, both curves
are already very close to that of the analog system.

5. CONCLUSIONS
In this paper, we have analyzed the impact of CSI quantization on the
performance of orthogonal random beamforming. With as few as 3
or 4 bits, we have found that the optimal quantizer attains a sum-rate
virtually identical to that of the analog system. With one quantiza-
tion bit the optimal quantizer still retains on the order of 75% of the
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Fig. 5. Sum-rate vs. number of users with analog, quantized CSI
and quantized information plus dedicated feedback.

analog sum-rate. In those conditions, however, the uniform quan-
tizer often suffers from substantial performance losses. In general,
the optimal quantizer was shown to be quite robust to mismatches
in the number of active users and the average SNR, with 90% of
the ideal performance retained when parameterizing the quantiza-
tion algorithm with values ±3 dB the actual ones. Finally, we have
found that by further refining the (optimally) quantized SINRs for
the scheduled users only, the sum-rate performance can be substan-
tially improved, in particular when very roughly quantized informa-
tion was used during the scheduling stage.
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