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ABSTRACT

We consider a multiple-input multiple-output (MIMO) wireless
communication scenario in which the channel follows a general
spatially-correlated complex Gaussian distribution with non-zero
mean. We derive an explicit characterization of the optimal input
covariance from an ergodic rate perspective for systems that operate
at low SNRs. This characterization is in terms of the eigen decompo-
sition of a matrix that depends on the mean and the covariance of the
channel, and typically results in a beamforming strategy along the
principal eigenvector of that matrix. Simulation results show the po-
tential impact of (jointly) exploiting the mean and the covariance of
the channel on the ergodic achievable rate at both low and moderate-
to-high SNRs.

Index Terms— MIMO Communication, Partial CSI, Mean and
Covariance Feedback, Ergodic Capacity, Low SNR

1. INTRODUCTION

The nature of the channel state information (CSI) that is available
at the transmitter of a multiple-input multiple-output (MIMO) wire-
less communication system has an impact on the ergodic capacity
of the system [1]. However, the significance of this impact depends
on the signal-to-noise ratio (SNR) at which the system operates [2].
If the realizations of the channel are full rank with high probability,
the high-SNR ergodic capacity is dominated by an SNR-dependent
term that depends only on the number of transmit and receive an-
tennas, and not on the channel state information [3,4]. However, at
low SNRs, the availability of channel information at the transmitter
can have a fundamental impact [5]. Although it is desirable, from
many design perspectives, for the transmitter to have full informa-
tion about the actual channel realization (i.e., instantaneous CSI), in
many practical communication systems this information cannot be
made available to the transmitter in a timely fashion and it is more
appropriate to consider systems in which the transmitter has access
only to statistical information about the channel [1]. This is particu-
larly true for systems opera ting at low-SNRs. For this reason, there
have been several analyses of the impact of channel correlation on
low-SNR communications (e.g., [5], [6]), but these analyses have
been made under rather restricted models for the channel statistics.
The goal of this paper is to provide an explicit characterization of
the low-SNR rate-optimal signalling strategy for an arbitrarily cor-
related channel model with non-zero mean.

In some of the early work on rate-optimal signalling (in the er-
godic sense) for wireless systems with multiple antennas, optimal
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signalling strategies for multiple-input single-output (MISO) sys-
tems were developed under certain channel models in [7] and [8]
for two classes of channels; the one in which the channel mean is
known at the transmitter and the channel covariance is assumed to
be a (scaled) identity, and another in which the channel covariance
is known at the transmitter and the mean is assumed to be zero.
That work was extended to MIMO systems in [9] and [10], where
rate-optimal transmission strategies were developed for the case in
which the channel has zero mean, correlated rows and independent
columns. For this scenario, necessary and sufficient conditions un-
der which the covariance matrix of the optimal signalling scheme is
of rank one were given in [9] and [10]. (This signalling scheme is
typically referred to as beamforming [1].) Using a similar technique
to the one in [9], rate-optimal signalling strategies and necessary
and sufficient conditions for the optimality of beamforming for the
case in which both the columns and the rows of the channel matrix
are correlated were developed in [11]. For that case, a closed-form
expression of the exact channel capacity was derived in [12]. In ad-
dition, sufficient (but not nece ssary) conditions under which beam-
forming is rate-optimal for the case in which the MIMO channel has
non-zero mean and (scaled) identity covariance were derived in [13].

While MIMO channel models in which the channel is assumed
to be zero mean with correlated columns and correlated rows are
sufficient to characterize some practical communication scenarios,
these models are unable to characterize more general correlation
structures that typically occur in practice [14]. However, the ex-
tension of the above mentioned analyses to more general correlation
models can be quite unwieldy. A characterization of the structure
that the optimal input covariance matrix must possess for a zero-
mean arbitrarily correlated channel model was provided in [14], but
that work did not contain an explicit construction of this matrix.

In this paper we consider the design of the rate-optimal input co-
variance for low-SNR signalling over an arbitrarily correlated chan-
nel with non-zero mean. For this case, we derive an explicit closed-
form expression for the low-SNR ergodic capacity, and we use that
expression to derive an explicit characterization of the optimal in-
put covariance matrix. Similar to [5], we show that whenever the
maximum eigenvalues of a certain matrix are distinct, beamform-
ing remains optimal in the presence of a non-zero mean, and an
arbitrary correlation. Computing the beam direction using the ap-
proach in [5] can be quite difficult for general correlation models,
and in [2] this direction was only computed for a particular model
known as the UIU model. The explicit characterization provided in
this paper enables us to avoid these difficulties and allows us to com-
pute the optimal beam directions for general correlation models with
non-zero mean. Furthermore, we show that this computation can be
significantly simplified in scenarios in which the channel covariance
matrix is structured. Our general approach and its specializations
enable us to elucidate the impact of channel correlation and mea n
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on the maximum achievable data rate at low SNRs.

While the focus of this paper is on achievable rate objectives, it
is worth pointing out that the availability of statistical channel infor-
mation at the transmitter can be used to improve other performance
metrics. For example, linear precoders have been designed to mini-
mize various probability of error criteria [15,16].

2. ERGODIC CAPACITY: FIRST-ORDER
APPROXIMATION AT LOW SNR

In this section we provide a first-order approximation of the low-
SNR ergodic capacity of a MIMO system with M transmit and NV
receive antennas. The channel matrix, H, is assumed to be Gaussian
block fading and perfectly known at the receiver, but only its mean,
H, and its covariance, ®, are known at the transmitter. Under the
usual additive white Gasussian noise model, the ergodic capacity of
this MIMO system is given by [4]

C= Ex{logdet(l + HQH' 1
Qo (Q)=P {logdet(I + HQHT)}, M
where @ is the covariance matrix of the input signal, P is the to-
tal power budget, (-)' denotes the Hermitian transpose operation,
and the expectation is taken over the ensemble of non-zero mean
spatially-correlated realizations of the channel matrix, H.

We begin our analysis of (1) by stating the following identity:
For a positive definite matrix X > 0,

log det(X) = Tr(log(X)), )

where the log function of a positive definite matrix is defined as the
inverse of the exponential function that maps the set of Hermitian
matrices to the set of positive semidefinite matrices [17]. Observing
that the matrix (I + HQHT) is strictly positive definite, we can
invoke the identity in (2) to express the capacity in (1) as

C = E {”ﬁ(l I+H HT)}‘ 3
axoiiily-p P 8 HHQI )y )

If A is a Hermitian matrix whose maximum eigenvalue is less
than unity, then the Taylor expansion of log(I + A) is,

log(I+A)=A—A%/24+ A%/3+... “)

Now, the matrix HQH ' is Hermitian, and for sufficiently low input
signal power, its maximum eigenvalue, Amax(HQH ), satisfies

Amax(HQH) < e < 1 )
with high probability. In this case, the expansion in (4) is dominated
by the linear term and one can approximate the capacity by

C =

max
Q=0,Tr(Q)=P

EH{Tr(HQHT) } 6)

3. EXPLICIT LOW-SNR ERGODIC CAPACITY

In order to compute the low-SNR capacity and the corresponding op-
timal signalling scheme for an arbitrarily correlated Gaussian chan-
nel with non-zero mean, we will first compute the expectation in (6).
Under the considered model, each channel realization can be repre-
sented by

vec(H) = ®'/2 vec(H,) 4 vec(H), (7)

where H is the channel mean and H,, is a (white) matrix whose i.i.d.
entries are drawn from the standard complex Gaussian distribution,

® is an NM x NM positive semidefinite Hermitian matrix, and
vec(-) is the operator that stacks the columns of the matrix on top
of each other. We will let unvec(-) denote the inverse of the vec(-)
operator, and for notational convenience, we will define

H = unvec(®"? vec(H.y)). (8)
Using the model in (7), we have that
En{Tr(HQH') }

= B, {Te(Q (11" + ") (i1 + 1)Q"?) }

=Eu, {’I‘r(Ql/2FITFIQ1/2)} +Te(HTHQ).  (9)
We can write the first term on the right hand side of (9) as

EH{Tr(QWﬁTﬁQI/Q)} - EH{ (vee(H)) (QT @ 1) vec(H)}
- Tr(<1>(QT ® I)), (10)

where AT and A* denote the transpose and conjugate of the matrix
A, respectively, and in (10) we have used the identity Tr(A'B) =
(vec(A))T vec(B). Using (10), we have that for the general model
in (7), the low-SNR rate-optimal covariance matrix maximizes

Tr((I)(QT ® IN)) FTe(ATAQ) = Tr(X(Q ® JN)), (11)

where, X = (&7 + (I:I‘LI:I@)IN)). Now, the ijth N x N block of
the NM x N M matrix (Q ® In) is in the form of a scaled identity.
That is,

[Q® IN]Gi—1)N4r(j—1)N+s = GijOrs, (12)
where g;; denotes the ijth entry of Q. Using (12) in (11)

M N
TI“(X(QT®IN)) = Z Zqin(i—l)N+s,(j—l)N+.s

ij=1s=1
M
= a5 Te(Xp ), (13)
ij=1
where we have used X|; ;) to denote the ijth N x N block of the
matrix X. Now, define the M x M Hermitian matrix Z via:
[2)ij = Tr(X(i,5)- (14)
Using this notation, (13) can be expressed as
Tr(ZQ). (15)

It may be useful at this point to particularize the results obtained
so far to the separable case in which the covariance matrix can be
decomposed into a finite sum of the Kronecker product of positive
semidefinite matrices [14]; that is, to the case in which

S

s=1

where {R,}5_ and {T:}5_; are sets of N x N and M x M Her-
mitian positive semidefinite matrices that characterize the correlation
between the receiver elements and the correlation between the trans-
mitter elements, respectively. In that case, using steps similar to the
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ones used to derive (15), it can be shown that the left hand side of (9)
can be expressed as Tr(Y @), where

S
Y=Y T(RRATVATY + HUH. (17)

r,s=1

An interesting observation from (17) is that for the separable
model in (16) the matrix Y is positive semidefinite. Actually, a con-
sequence of the following lemma, which may be of independent in-
terest, is the fact that the corresponding matrix Z in (14) for the
case of the general channel correlation model in (7) is also positive
semidefinite. We will use that fact in Section 4 to find the low-SNR
rate-optimal input covariance matrix.

Lemma 1 Let A be an MN x MN positive semidefinite matrix,
and let A be partitioned into M X M blocks, each of size N X N.
Then the matrix constructed in such a way that each block is re-
placed by its main diagonal is also positive semidefinite. Moreover,
the M x M matrix constructed by replacing each block by its trace
is also positive semidefinite.

See the Appendix for a proof.

4. THE OPTIMAL INPUT COVARIANCE MATRIX

We now proceed to find the covariance matrix of the input signals
that maximize the low-SNR ergodic achievable rate. That is, we
solve the following optimization problem:

max

oo Biyer VO (19

where the matrix W is fixed. If the general channel correlation
model in (7) is used, then W = Z, and if the separable model in (16)
is used, then we set W = Y. The derivation of our solution to (18)
begins with the following lemma from [18].

Lemma2 /18, Example 7.4.13] Let UsX 4V} and U5V}, de-
note the singular value decompositions of the M x M matrices A
and B, respectively then, with the matrix A fixed

max
Up,Vp are unitary

{ére{Tr(AB*)}} =Tr(SA%g), (19
where R{-} denotes the real part of the argument and the singular
values are assumed to be arranged in the same (decreasing) order.
The matrices Up and Vg that achieve the maximum value are given
byUp = Ua and Vp = Va.

Since W and @ are positive semidefinite, their singular values
coincide with their eigenvalues, and hence if we denote the eigen
decomposition of W by Uw Aw Uy, and that of Q by UgAqU,,
Lemma 2 implies that (at low SNRs) it is sufficient to optimize over
the covariance matrices that satisfy

Ug = Uw. (20)
In that case, the optimization problem in (18) can be cast as

max
M
AQ; 20, 2205, A <P

M
> AwAas 1)

i=1

where A\, and A, denote the ith eigenvalue of W and @), respec-
tively. The optimization problem in (21) is a convex linear program
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that can be easily solved. If the maximum eigenvalue of W is dis-
tinct, the optimal eigenvalues of @ are given by Ao, = P, and
AQ, = ... = A@,, = 0. That is, beamforming along the eigen-
vector that corresponds to the maximum eigenvalue of W is suffi-
cient for rate-optimal communication at low SNR. Observe that for
the case in which the largest eigenvalue of W has multiplicities, any
partitioning of power in the direction of the eigenvectors correspond-
ing to these eigenvalues is optimal up to first-order approximation.
However, for up to second-order optimality, power may have to be
carefully distributed across these directions [6].

Remark 1 Observe that for the case in which the separable model
corresponds to the so-called Kronecker model (i.e., the case of S =
1 in (16)), the optimum beam direction is along the eigenvector that
corresponds to the maximum cigenvalue of (Tr(R)T+H ' H). If the
channel is zero mean, the matrix R does not affect the optimal beam
direction, and, in agreement with the result in [11], this direction is
along the principal eigenvector of T". In contrast, if the channel is
non-zero mean, our result suggests that Tr(R) acts as a weight that
controls the relative impact of the eigenvectors of 7" and that of the
eigenvectors of A" H on the optimal beam direction. |

5. ANUMERICAL EXAMPLE

In this section we provide a numerical example that illustrates the
utility of the explicit characterization of the optimal low-SNR sig-
nalling strategy derived in Section 4. We consider a MIMO system
with five transmit and five receive antennas; i.e., M = N = 5.
With the noise power normalized to unity, Figure 1 shows a plot of
the achievable rates under different signalling strategies against the
transmitted signal power . The channel mean H was randomly cho-
sen and its Frobenius norm was set to be equal to 0.866. The matrix
® in the general correlation model in (7) was also randomly chosen
and its trace was set to 2.5. In order to provide a benchmark for these
results, in Figure 1 we also provide an upper bound that corresponds
to the maximum rate that would be achievable had the channel real-
izations been perfectly known to the transmitter (i.e., instantaneous
CSI). The signalling strategies considered i n Figure 1 are as follows:

1. The transmitter ignores all channel information and transmits
isotropically; i.e., @ = (P/M)I.

2. The transmitter ignores the channel covariance information
and treats the mean as if it were the actual channel. Hence,
transmission takes place along the eigenvectors of H' F with
the eigenvalues of () chosen so as to “water-fill” over those
of HTH. (At low SNRs this will result in beamforming along
the principal eigenvector of H'H.)

3. The transmitter employs the low-SNR rate-optimal strategy
derived herein. That is, beamforming along the principal
eigenvector of W; cf., (18).

4. The transmitter signals along the eigenvectors of W (cf., (20))
without restricting the input covariance matrix to be rank one.
For each input power constraint, the eigenvalues of @) are
found by solving the problem in (1) (with Uy = Uw ) using
gradient-based stochastic optimization techniques. (At suffi-
ciently low input powers, this strategy reduces to Strategy 3.)

Figure 1 illustrates the optimality of beamforming along the prin-
cipal eigenvectors of W (Strategy 3) at low SNRs. As expected, it
also illustrates the price paid at higher SNRs for the restriction of the
signal covariance to be rank one. However, by selecting the eigen-
vectors of the input covariance matrix as in (20) and optimizing over
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Fig. 1. Achievable rates versus transmitted signal power for different
transmission schemes over a correlated channel model with non-zero
mean. The signalling schemes are isotropic signalling (Strategy 1),
mean-optimal signalling (Strategy 2), signalling along low-SNR op-
timal basis (Strategy 4) and beamforming (Strategy 3).

the set of feasible eigenvalues (Strategy 4), we obtain consistently
higher achievable rates than any of the other considered strategies.
While we cannot claim optimality of Strategy 4 at this point, we
have performed numerous experiments, all of which suggest that this
Strategy 4 is capable of achieving rates that are higher than those that
can be achieved under known signalling strategies.

6. CONCLUSION

In this paper we have provided explicit characterizations of the low-
SNR rate-optimal input covariance matrix when both the channel
mean and covariance are known at the transmitter. We have con-
sidered both separable and general channel correlation models and
have demonstrated numerically the optimality of the computed beam
directions at low SNR.

7. APPENDIX: PROOF OF LEMMA 1

First, observe that Lemma 1 holds trivially for M = 1 and
N = 1. Now, consider general values for M and N. For any
i € {1,...,MN}, define the matrix E; to be the MN x MN
all zero matrix with the ith entry on the main diagonal replaced by
one. Let the matrix constructed by replacing each block by its main
diagonal be denoted by GG. Then one can verify that

N M M
G = Z(Z E(jfl)NH)A(Z E(ijl)NJri)- (22)
=1

i=1 j=1

Since A is  positive  semidefinite, then so s

(Zﬁl E(]-_l)NH)A(Z;il E(Tj—1)N+i)~ Invoking the fact
that the sum of positive semidefinite matrices is also positive
semidefinite completes the proof of the first part of the lemma.

In order to prove the second part, let F' denote the M x M matrix
constructed by replacing each block by its trace, and let 15 be the
N x 1 vector in which all entries are equal to unity. Then

F=(Iu®13)G(In ®1n). (23)
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From the first statement of the lemma, we know that GG is positive
semidefinite. Therefore, F' is also positive semidefinite, which com-
pletes the proof of the second statement of the lemma.
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