
PERFORMANCE BOUNDS FOR CHANNEL TRACKING ALGORITHMS
FOR MIMO SYSTEMS

Livnat Ehrenberg, Sharon Gannot, Amir Leshem and Ephraim Zehavi

School of Engineering, Bar-Ilan University, Ramat-Gan, Israel
{ojlvol,gannot,leshema,zehavie1}@eng.biu.ac.il

ABSTRACT

In this paper1 we derive performance bounds for tracking time-varying
OFDM multiple-input multiple-output (MIMO) communication chan-
nel in the presence of additive white Gaussian noise (AWGN). We
discuss two channel tracking schemes. The first tracks the filter co-
efficients directly in time-domain, while the second separately tracks
each tone in the frequency-domain. The Kalman filter, with known
channel statistics, is utilized for evaluating the performance bounds.
It is shown that the time-domain tracking scheme, which exploits the
sparseness of the channel impulse response, outperforms the compu-
tationally more efficient, frequency-domain tracking scheme, which
does not exploit the smooth frequency response of the channel.

Index Terms— Time-varying Channels, Communication sys-
tem performance, Tracking, Kalman filtering, MIMO systems

1. INTRODUCTION

In recent years, MIMO OFDM schemes have gained increased in-
terest in both theoretical and practical aspects. Channel tracking in
MIMO regime is a more complicated task than in the commonly
used single-input-single-output (SISO) case. Recently, several blind
estimation methods for channel tracking were proposed. Dahl et
al. [1] and Gannot et al. [2] propose to track the singular value de-
composition (SVD) of the channel matrix. The proposed algorithms
differ in the algebraic structure used. Komninakis et al. [3] use the
Kalman filter in the time-domain to track the channel coefficients.
The unknown input signals are replaced by the output of a deci-
sion feedback equalizer (FDE). Bulumulla et al. [4] replace the time-
domain formulation by its frequency-domain counterpart, exploiting
the channel smooth frequency response. Cheng and Dahlhaus [5]
compare a time-domain scheme, similar to [3], and a frequency-
domain scheme, similar to [4], and show their equivalence. Haeb-
Umbach and Bevermeier [6] use time-domain Kalman filtering (dur-
ing the preamble) for the initialization of frequency-domain Wiener
filter, used for blindly tracking the channel impulse response.

Our contribution does not aim at the design of an actual channel
tracking method, but rather establishes performance bounds for any
tracking algorithm. Specifically, we compare time- and frequency-
domain schemes assuming that the transmitted data is given. We
show that frequency-domain tracking algorithms which does not ex-
ploit the smooth channel frequency response are inferior to the, com-
putationally more expensive, time-domain tracking schemes.

The structure of this work is as follows. In Sec. 2 we introduce
the problem. The use of the Kalman filter for evaluating the chan-
nel tracking performance bounds is motivated in Sec. 3. The channel

1This research was partially supported by MAGNET ISRC consortium,
Ministry of Industry, Trade and Labor, the Government of Israel.

model and measurement equations are restated in state-space presen-
tation in Sec. 4. Finally, the superiority of the time-domain scheme
over the frequency-domain scheme is experimentally demonstrated
in Sec. 5. We draw final conclusions in Sec. 6.

2. PROBLEM FORMULATION

In this section, the MIMO channel in the orthogonal frequency-
division multiplexing (OFDM) framework is presented. We start
by formulating the problem in the time-domain and proceed to the
frequency-domain presentation. We describe only the downlink of
the MIMO channel, as the derivation of the uplink channel is equiv-
alent.

2.1. Time-Domain Presentation

Let N denote the OFDM symbol length. Assume that the number
of transmit antennas is Nt, and the number of the received antennas
is Nr . Each of the Nt × Nr MIMO channels is assumed to be fad-
ing channels with L coefficients hij(�, n), where 1 ≤ i ≤ Nt are
the transmit antenna indexes, 1 ≤ j ≤ Nr are the receive antenna
indexes, and � = 0, . . . , L − 1 are the coefficients indexes. We as-
sume the filters to be time-variant, and hence, their values depend
on n, the symbol index. However, the channels are assumed to be
time-invariant within the OFDM symbol.

The ith antenna in the downlink transmits a sequence of OFDM
symbols xi(m, n), where −∞ < n < ∞ is the symbol index,
and m = 0, . . . , N − 1 denotes the time index within the OFDM
symbol. For the OFDM assumption to hold, each symbol of the
transmitted signal is comprised of the data samples preceded by a
cyclic prefix (CP). The length of the CP should be greater than or
equal to the channel spread L, to guarantee proper operation of the
OFDM system.

The received signal at the jth antenna is thus a linear combina-
tion of transmitted sequences:

yj(m, n) =

Nt∑
i=1

L−1∑
�=0

hij(�, n)xi(m− �, n) + zj(m, n) (1)

where the additive term zj(m, n) is assumed to be temporarily-white
Gaussian noise. Due to the CP, xi(m − �, n) = xi(mod(m −
�, N), n). The received signals can be compactly described in a ma-
trix notation:

yn = (INr ⊗Xn) hn + zn (2)

where ⊗ is the Kronecker product and

hij
n

�
=

[
hij(0, n) hij(1, n) . . . hij(L− 1, n)

]T

hn
�
=

[ (
h11

n

)T
. . .

(
hNt1

n

)T
. . .

(
h1Nr

n

)T
. . .

(
hNtNr

n

)T
]T
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yn

�
=

[
y1(0, n) . . . y1(N − 1, n) . . .

yNr (0, n) . . . yNr (N − 1, n)
]T

zn
�
=

[
z1(0, n) . . . z1(N − 1, n) . . .

zNr (0, n) . . . zNr (N − 1, n)
]T

and

Xi
n

�
=

⎡
⎢⎢⎢⎣

xi(0, n) . . . xi(−L + 1, n)
xi(1, n) . . . xi(−L + 2, n)

...

xi(N − 1, n) . . . xi(N − L, n)

⎤
⎥⎥⎥⎦

N×L

Xn
�
=

[
X1

n X2
n . . . XNt

n

]
N×(LNt)

.

zn, comprised of concatenated noise samples, is a zero-mean,
temporarily-white, circular symmetric complex, Gaussian dis-
tributed random vector, zn ∼ CN (0,Rt

n), where Rt
n ∈

C
(NrN)×(NrN)

is the time-domain noise covariance matrix. If the
measurement noise is also spatially-white, i.e. the noise signals re-
ceived by the antennas are uncorrelated, the covariance matrix Rt

n

becomes diagonal.

2.2. Frequency-Domain Presentation

If the CP is larger than or equal the channel order L, the channel
effect is converted into a circular convolution, and hence can be con-
veniently expressed as a multiplication in the frequency-domain:

yn(ω) = Hn(ω) xn(ω) + zn(ω) (3)

where ω is the frequency bin, xn(ω) ∈ C
Nt×1

is the channel in-

put vector, yn(ω) ∈ C
Nr×1

is the channel output vector, Hn(ω) ∈
C

Nr×Nt is the channel matrix, and zn(ω) is a circular symmet-
ric complex AWGN zn(ω) ∼ CN (0,Rf

n(ω)). In the frequency-
domain formulation, the frequency bins are decoupled, hence yield-
ing instantaneous rather than convolutive mixing.

3. THE USE OF THE KALMAN FILTER FOR
PERFORMANCE EVALUATION

The need for establishing a proper communication link necessitates
the development of channel tracking algorithms. The current contri-
bution is not concerned with the derivation of such an algorithm. Our
aim is to present performance bounds which can be applicable to any
tracking method. The goal of time-domain tracking algorithms is the
estimation of hn using the measurements given in (2). The outcome
of frequency-domain tracking algorithms, using the measurements
given by (3), is an estimate of Hn(ω).

We propose a Bayesian framework for evaluating the upper per-
formance bound for the ability of algorithms to track the channel co-
efficients. The Kalman filter [7] is the optimal linear minimum mean
square error (MSE) estimator of a state-vector from measurements
up to that time-instant; moreover, it is the optimal minimum MSE
estimator in general (i.e., among all linear and nonlinear estimators),
when the states and the measurements are jointly Gaussian.

For our tracking scheme, the channel coefficients are therefore
treated as stochastic processes, while the terms related to the input
signal (either Xn in the time-domain or xn(ω) in the frequency-
domain) are assumed to be known. Naturally, this assumption cannot
be met in practice. However, since this contribution does not aim at

deriving new algorithms, but rather evaluating performance bounds,
we will assume that the input signal are indeed known. It should be
stressed that the tightness of the derived bounds is not claimed.

The Kalman filter is based on state-space formulation of the sys-
tem’s dynamics. Assume that the underlying process of interest dn

satisfies the following recursive model equation:

dn = Φndn−1 + wn. (4)

Assume further, that the measurement yn is related to the state-
vector dn via the following measurement equation:

yn = Gndn + vn. (5)

Proper definitions of the model (4) and measurement (5) equa-
tions will be discussed in Sec. 4.1 (time-domain) and in Sec. 4.2
(frequency-domain), where the involved terms dn, yn, the transi-
tion matrix Φn, the innovation process wn, the measurement matrix
Gn, and the noise process vn will be identified.

We assume that the exact statistical model governing the pro-
duction of the channel coefficients is known in advance. Since, usu-
ally, the actual models are replaced by their estimated values, this
assumption further restricts the application of the proposed method
to the evaluation of merely an upper bound for the tracking ability.

Define d̂n|n the minimum MSE estimator of dn in (4) based
on the measurements yn, n = 0, 1, . . . in (5), and let Pn|n =

E
{

(d̂n|n − dn)(d̂n|n − dn)H
}

be its respective error covariance

matrix. The Kalman procedure is initialized with d̂0|0 = m0, and
P0|0 = P0 (algorithm initialization schemes are out of the scope
of this paper.). It then proceeds for n = 1, 2, ... with the following
propagation and update equations.
Propagation Equations:

d̂n|n−1 = Φnd̂n−1|n−1 (6)

Pn|n−1 = ΦnPn−1|n−1Φ
H
n + Qn.

Update Equations:

Kn = Pn|n−1G
H
n (GnPn|n−1G

H
n + Rn)−1

(7)

d̂n|n = d̂n|n−1 + Kn(yn −Gnd̂n|n−1)

Pn|n = (I−KnGn)Pn|n−1.

where, Qn
�
= E

{
wnwH

n

}
is the innovation noise covariance ma-

trix, Rn
�
= E

{
vnvH

n

}
is the measurement noise covariance matrix,

and Kn is the Kalman gain.
In the rest of the paper we will discuss different instances of (4)

and (5) which will enable the application of the Kalman filter for
evaluating a upper performance bound for the channel tracking al-
gorithms.

4. CHANNEL MODEL AND STATE-SPACE
FORMULATION

In many cases the channel coefficients trajectory can be approx-
imately modeled as an auto-regressive (AR) process of order P .
Hence the �th tap of the ijth time-varying channel is given by

hij(�, n) =
P∑

p=1

αij
� (p)hij(�, n− p) + wij(�, n). (8)

We assume that the frame-dependent filter coefficients can be mod-
eled as a wide-sense-stationary (WSS) AR(P ) process. Hence, the
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driving noise signals wij(�, n) are independently identically dis-
tributed (i.i.d.). We further assume that all Nt × Nr × L processes
wij(�, n) are uncorrelated.

Outdoor fading channels are often modeled as AR processes [4].
The AR coefficients αij

� (p) and the variance of the innovation pro-
cess wij(�, n) can be determined in advance by solving the Yule-
Walker equations using the channel correlation matrix. Following
Komninakis [3], we assume that the mean of all channel coefficients
is zero, and that their autocorrelation sequences are governed by the
Doppler shift fD:

E
{

hij(�, n)
(
hij(�, n−m)

)∗}
∼ J0(2ΠfDmT ) (9)

where T is the duration of a transmitted symbol, T = 1
Δf

. Δf
is the frequency spacing between the OFDM sub-carriers. It was
shown empirically that AR modeling fits measured indoor channels
as well [2]. Given that the geographic route is identical for all the
channel reflections, we can also assume that the taps do not depend
on the coefficient index, i.e. αij

� (p) = αij(p), ∀ p = 1, . . . , P . For
the clarity of the exposition we will assume that the order of all AR
processes is P = 1.

4.1. State-Space Formulation in the Time-Domain

Identify the desired state-vector dn as the channel vector hn ∈
C

(LNtNr)×1
. Hence, (2) can be easily restated as a proper mea-

surement equation:

yn = (INr ⊗Xn) dn + zn (10)

i.e. INr ⊗ Xn in (2) can be identified as Gt
n, the measurement

matrix.
Define wn ∈ C

(LNtNr)×1
, the innovation vector:

wij
n

�
=

[
wij(0, n) wij(1, n) . . . wij(L− 1, n)

]T

wn
�
=

[
(w11

n )T . . . (wNt1
n )T . . . (11)

(w1Nr
n )T . . . (wNtNr

n )T
]T

.

The driving noise covariance matrix is thus given by Qt
n =

E{wnwH
n }. Due to the assumption that all driving noise pro-

cesses are uncorrelated, Qt
n is a diagonal matrix. We further as-

sume that the coefficients obey a decaying power profile. Define

also A ∈ C
(LNtNr)×(LNtNr)

, the AR(1) transition matrix:

αij �
=

[
αij . . . αij

]
L×1

A
�
= diag

([
α11 . . . αNt1 . . . αNtNr

])
. (12)

Using these definitions, it is easily verified that (8) can be reformu-
lated into stat-space presentation (4) with dn = hn, Φ = A, and
Gn = Gt

n.

4.2. State-Space Formulation in the Frequency-Domain

An AR(P ) model for the matrix Hn(ω) in the frequency-domain
can be derived from the time-domain model described in (8).

hij(ω, n)
�
= DTFT{hij(�, n)} =

L−1∑
l=0

hij(�, n)e−jωτ
ij
l (13)

=

L−1∑
l=0

( P∑
p=1

αij(p)hij(�, n− p) + wij(, �, n)
)
e−jωτ

ij
l

=
P∑

p=1

αij(p)hij(ω, n− p) +

L−1∑
l=0

wij(�, n)e−jωτ
ij
l .

Collecting terms, we have:

hij(ω, n) =
P∑

p=1

αij(p)hij(ω, n− p) + wij(ω, n). (14)

Hence, hij(ω, n) is an AR(P ) model as well, with the same co-
efficients {αij(p)}P

p=1. Since the frequency-domain driving noise

wij(ω, n) sequences are the DTFT of the respective time-domain
driving noise sequences wij(�, n), they are also i.i.d. sequences.
The channels’ independence also implies that wij(ω, n) are inde-
pendent for different ij pairs. Finally, the channel matrix Hn(ω) is
given by

Hn(ω)
�
=

⎡
⎢⎣

h11(ω, n) · · · hNt1(ω, n)
...

...

h1Nr (ω, n) · · · hNtNr (ω, n)

⎤
⎥⎦ . (15)

The state-space equation can now be stated. Again, for simplicity,
we present only the results for AR(1) processes. Define dn(ω) ∈
C

(NtNr)×1
the desired vector:

dn(ω)
�
=

[
h11(ω, n) . . . hNt1(ω, n) . . . (16)

h1Nr (ω, n) . . . hNtNr (ω, n)
]T

.

Using (3) we get the measurement equation:

yn(ω) =
(
INr ⊗ xT

n (ω)
)

dn(ω) + zn(ω) (17)

�
= Gf

n(ω)dn(ω) + zn(ω).

Further defining the innovation vector

wn(ω)
�
=

[
w11(ω, n) . . . . . . wNtNr (ω, n)

]
(18)

and the transition matrix

A
�
= diag([ α11 · · ·αNt1 · · ·αNtNr ]). (19)

the model equation is readily shown to be:

dn(ω) = Adn−1(ω) + wn(ω). (20)

It is important to emphasize that the resulting Kalman filter will
be applied in parallel to all frequency bins (i.e. the estimators are
decoupled). The innovation noise vector wn(ω) is an i.i.d. pro-

cess, with zero-mean and covariance matrix E{wn(ω)wH
m(ω)} �=

Qf
n(ω)δm,n. Assuming uncorrelated antennas Qf

n(ω) is a diago-
nal matrix. Following the assumption that the driving noise signals
wij(�, n) are uncorrelated it is easily shown that:

E
{
|wij(ω, n)|2

}
=

L−1∑
l=0

E
{
|wij(�, n)|2

}
(21)

5. EXPERIMENTAL STUDY

Simulations were conducted using an AR(1) fading model for the
channel coefficients. We used sparse impulse responses with delay
spread L = 16. The known input signal was white Gaussian noise,
transmitted over N = 128 sub-carriers (the OFDM symbol length).
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The performance measure was defined as the mean normalized esti-
mation error (over all channels and all time indexes):

MSE =
E

{
‖d̂n|n − dn‖2

}

E {‖dn‖2} (22)

where, dn = hn for the time-domain algorithm and is given by (16)
for the frequency-domain algorithm. We note that, using (6) and (7),
Pn|n can be directly calculated, bypassing the need for calculating

d̂n|n. The solution of the resulting Riccati difference equation [7]
is the desired MSE. However, we found it interesting to present the

estimate d̂n|n as well.
The MSE as a function of the input signal-to-noise-ratio (SNR)

is depicted in Fig. 1.
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Fig. 1. MSE vs. SNR for time- and frequency-domain algorithms.

It is evident that the upper performance bound, obtained by the
time-domain algorithm, outperforms the upper bound, obtained by
the frequency-domain algorithm, over the entire SNR range. Above
input SNR higher than 20 dB, the difference between the algorithms
becomes significant.

We further demonstrate and compare the tracking ability of the
algorithms. In Fig. 2 the tracking ability for a single OFDM sub-
carrier is demonstrated for input SNR=15 dB. Again, it can be easily
verified that the trace of the time-domain algorithm is closer than the
trace of the frequency-domain algorithm to the real channel. Compa-
rable results were obtained for the performance bounds for tracking
single channel coefficients.

6. DISCUSSION

In this contribution we compared time-domain and frequency-
domain performance bounds for channel tracking utilizing the
Kalman filter. The frequency-domain formulation is much simpler
than the time-domain formulation due to the sub-carrier decoupling.

However, while the number of estimated parameters in the
frequency-domain is equal to NtNrN , the respective number of pa-
rameters in the time-domain is only NtNrL (recall that N is the FFT
length and L is the delay spread of the channel). Since the chan-
nel length in the time-domain is assumed to be significantly smaller
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Fig. 2. Tracking trace for sub-carrier #17 as a function of the sym-
bol index n.

than the FFT length, i.e L 	 N , the number of the time-domain
parameters to be tracked is significantly smaller than the number of
the frequency-domain parameters. Hence, as verified by the exper-
imental study, the upper performance bound for time-domain algo-
rithms is expected to be correspondingly higher than for the respec-
tive frequency-domain algorithms.

Moreover, the tracking ability of the frequency-domain algo-
rithm saturates to non-zero MSE even for SNR approaching infinity.
This phenomenon is also attributed to the large number of unknown
parameters in comparison with the number of available equations.

For lower SNR values the tracking ability of both methods is
comparable, and hence the more efficient frequency-domain algo-
rithms may be preferred.

7. REFERENCES

[1] T. Dahl, N. Christopherson, and D. Gesbert, “Blind MIMO
eigenmode transmission based on the algebraic power method,”
Signal Processing, vol. 52, no. 9, pp. 2424–2431, Sep. 2004.

[2] S. Gannot, A. Leshem, O. Shayevitz, and E. Zehavi, “Tracking a
MIMO channel singular value decomposition via projection ap-
proximation,” in The 24th IEEE Israel Convention, Eilat, Israel,
Oct. 2006, pp. 91–94.

[3] C. Komninakis, C. Fragouli, A.H. Sayed, and R.D. Wesel,
“Multi-input multi-output fading channel tracking and equaliza-
tion using Kalman estimation,” IEEE Transactions on Signal
Processing, vol. 50, no. 5, pp. 1065–1076, May 2002.

[4] S.B. Bulumulla, S.A. Kassam, and S.S. Venkatesh, “An adaptive
diversity receiver for OFDM in fading channels,” in Int. Conf.
on Communications, Atlanta, Georgia, USA, June 1998, IEEE,
vol. 3, pp. 1325–1329.

[5] Z. Cheng and D. Dahlhaus, “Time versus frequency domain
channel estimation for OFDM systems with antenna arrays,” in
The 57th Vehicular Technology Conf., Jeju, Korea, Apr. 2003,
IEEE, vol. 1, pp. 651–655.

[6] R. Haeb-Umbach and M. Bevermeier, “OFDM channel estima-
tion based on combined estimation in time and frequency do-
main,” in Proc. Int. Conf. on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Honolulu, Hawaii, USA, Apr. 2007, IEEE,
vol. 3, pp. 277–280.

[7] M. S. Grewal and A. P. Andrrews, Kalman Filtering, Theory
and Practice, Information and System Sciences series. Prentice-
Hall, New Jersey, USA, 1993.

3088


