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ABSTRACT
Crosstalk interference is the limiting factor in transmission over
copper lines. Crosstalk cancellation techniques show great potential
for enabling the next leap in DSL transmission rates. An important
issue is the effect of finite world length on performance. In
this paper we provide an analysis of the performance of linear
zero-forcing precoders, used for crosstalk compensation, in the
presence of quantization noise. We quantify analytically the trade
off between quantization level and transmission rate degradation.
We demonstrate, through simulations on real lines, the accuracy
of our estimates. Finally, we show how to use these estimates as
a design tool for DSL linear crosstalk precoders. Index Terms—
Multichannel DSL, vectoring, linear precoding, capacity estimates,
quantization.

I. INTRODUCTION
DSL systems are capable of delivering high date rates over

copper lines. A major problem of DSL technologies is the elec-

tromagnetic coupling between the twisted pairs within a binder

group. Reference [1] and the recent experimental studies in [2], [3]

have demonstrated that vectoring and crosstalk cancellation allow a

significant increase of the data rates of DSL systems. In particular,

linear precoding has recently drawn considerable attention [4], [5]

as a natural method for crosstalk precompensation. In [2], [3] it

is shown that linear precoding affords a per-loop capacity boost

ranging from 2× to 4×, and also substantially reduces per-loop

capacity spread and outage, which are very important metrics from

an operator’s perspective.

References [4], [5] advocate the use of a diagonalizing pre-

compensator, and demonstrate that, without modification of the

Customer Premise Equipment (CPE), one can obtain near optimal

performance. Recent work in [6], [7], [8] has shown that a low-

order truncated series approximation of the inverse channel matrix

affords significant complexity reduction in the computation of

the precoding matrix. Implementation complexity (i.e., the actual

multiplication of the transmitted symbol vector by the precoding

matrix) remains high, however, especially for multicarrier trans-

mission which requires one matrix-vector multiplication for each

tone. Current advanced DSL systems use thousands of tones. In

these conditions, using minimal word length in representing the

precoder matrix is important. However, using coarse quantization

will result in substantial rate loss. The precoder matrix elements

will be quantized in any practical implementation. The number of

quantization bits per matrix coefficient will have a direct impact

on system complexity and performance. In this paper we study

exactly this trade-off. We show that both absolute and relative
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transmission loss decay exponentially as a function of the number

of quantizer bits and provide very explicit bounds for the loss in

each tone. Under analytic channel models as in [9] we provide

refined and explicit bounds for the transmission loss across the band

and compare these to simulation results. This explicit relationship

between the number of quantizer bits and the transmission rate loss

due to quantization is a very useful tool in the design of practical

systems.

The structure of the paper is as follows. In section II, we present

the signal model for a precoded discrete multichannel system and

provide a model for the precoder errors we study. In section III a

general formula for the transmission loss of a single user is derived

in the case of full channel state information where the rate loss of

a single user results from quantization errors. In section IV we

provide simulation results on measured lines, which support our

analysis. Proofs of the various mathematical claims made here is

deferred to the Journal version.

II. PROBLEM FORMULATION

II-A. Signal model

In this section we describe the signal model for a precoded

discrete multitone (DMT) system. We assume that the trans-

mission scheme is Frequency Division Duplexing (FDD), where

the upstream and the downstream transmissions are performed at

separate frequency bands. Moreover, we assume that all modems

are synchronized. Hence, the echo signal is eliminated, as in [10],

[1], and the received signal model at frequency f is given by

x(f) = H(f)s(f) + n(f), (1)

where s(f) is the vectored signal sent by the optical network unit

(ONU), H(f) is a p × p matrix representing the channels, n(f)
is additive Gaussian noise, and x(f) (conceptually) collects the

signals received by the individual users. The users estimate rows

of the channel matrix H(f), and the ONU uses this information

to send P(f)s(f) instead of s(f). This process is called crosstalk
pre-compensation. In general such a mechanism yields

x(f) = H(f)P(f)s(f) + n(f). (2)

Let D(f) = diag(H(f)) denote the diagonal of H(f) and take

P(f) = H(f)−1D(f) as suggested in [5]. With this we have

x(f) = D(f)s(f) + n(f), (3)

showing that the crosstalk is eliminated. Note that with F(f) =
H(f) − D(f) we have the following formula for the matrix P(f)

P(f) = (I + D−1(f)F(f))−1. (4)
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Following [5] we assume that the matrices H(f) are row-wise

diagonally dominant, namely that

‖hii‖ >> ‖hij‖, ∀i �= j. (5)

In fact, motivated in part by Gersgorin’s theorem [11] we propose

the parameter r(H)

r(H) = max
1≤i≤N

 P
j �=i |hij |
|hii|

!
, (6)

as a measure for the dominance. In most downstream scenarios

the parameter r is indeed much smaller than 1. We emphasize

that typical downstream VDSL channels are row-wise diagonally

dominant even in mixed length scenarios as demonstrated in [7].

II-B. A model for precoder errors
In practical implementations, the entries of the precoding matrix

P will be quantized. The number of quantizer bits used is dictated

by complexity and memory considerations. Indeed, relatively coarse

quantization of the entries of the precoder P allows significant

reduction of the time complexity and the amount of memory

needed for the precoding process. The key problem is to determine

the transmission rate loss of an individual user caused by such

quantization. Let

P = (I + D−1F)−1 + E, (7)

where E models the errors caused by quantizing the precoder P.

The problem is to determine the capacity of the system, and the

capacity of each user, in terms of the system parameters and the

statistical parameters of the errors. Note that equation (7) allows

the study of capacity loss due to three types of errors: errors in the

estimation of H, quantization errors in the representation of H, and

quantization errors in the representation of the precoder P.

Our focus will be in the study of the effect of quantization

errors in the representation of the precoder on the capacity of an

individual user. To model this situation, assume that the matrix

elements of E are uniformly bounded by 2−d for some integer d.

This is a weak assumption on the type of the quantization process.

Informally it is equivalent to an assumption on the number of bits

used to quantize an entry in the channel matrix. In particular, our

analysis of the capacity loss will be independent of the specific

quantization method and our results are valid for any technique that

quantizes matrix elements with bounded errors. Note that due to

the stationarity of DSL systems, and their long coherence time we

may assume that the estimation of the channel matrices is possible

at any desired precision.

III. A GENERAL FORMULA FOR TRANSMISSION LOSS

The purpose of this section is to provide a general formula for

the transmission rate loss of a single user, resulting from errors

in the estimated channel matrix as well as errors in the precoder

matrix. The origin of these errors is irrelevant for the formula. As

the results of this section are technical, we briefly overview them.

First, we develop a useful expression for the equivalent channel

in the presence of errors. This is given in formula (9). Next, a

formula for the transmission loss is obtained. The formula compares

the achievable rate of a communication system using an ideal ZF

precoder as in (4) versus that of a communication system whose

precoder is given by (7). This is formula (20) which is the key to

the whole paper. Note that we use a gap analysis as in [12], [13].

A useful corollary in the form of formula (22) is derived. This will

be used in the next section to obtain bounds on capacity loss due

to quantization.

Recall that H(f) = D(f) + F(f) is a decomposition of the

channel matrix at a given frequency to diagonal and non-diagonal

terms. Also we let SNRi(f) be the signal to noise ratio of the i-th
receiver at frequency f

SNRi(f) =
Pi(f)|di,i(f)|2

|ni(f)|2 . (8)

In this formula Pi(f) is the power spectral density (PSD) of the

i-th user at frequency f , and ni(f) is the associated noise term.

III-A. A formula for the channel in presence of errors
We first derive a general formula for the equivalent signal model.

The next lemma provides a useful reformulation of the signal model

in (2):

Lemma 3.1: The precoded channel (2) with precoder as in (7)

is given by

x(f) = D(f)s(f) + D(f)Δ(f)s(f) + n(f), (9)

with

Δ(f) = (I + D−1(f)F(f))E(f) (10)

The proof is straightforward.

III-B. Transmission Loss of a Single User
Consider a communication system as defined in (3) and denote

by B the frequency band of the system. We let SNRi(f) be as

in (8) and let Γ be the Shannon Gap comprising modulation loss,

coding gain and noise margin.

Let Ri be the transmission rate of the i-th user in the system

defined in (3). Recall that in such a system the cross talk is

completely removed and it is well known that

Ri =

Z
f∈B

log2(1 + Γ−1SNRi(f))df. (11)

Let

Ri(f) = log2(1 + Γ−1SNRi(f)) (12)

be the transmission rate at frequency f (formally, it is just the

density of that rate).

Let R̃i(f) be the transmission rate at frequency f of the i-th user,

when the precoder in (7) is used. We note that while Ri(f) is a

number, the quantity R̃i(f) depends on the random variables E(f)
and hence by itself is a random variable. Let R̃i be the transmission

rate of the i-th user for the equivalent system in (9). Thus,

R̃i =

Z
f∈B

R̃i(f)df. (13)

Definition 3.1: The Transmission loss Li(f) of the i-th user at

frequency f is given by

Li(f) = Ri(f) − R̃i(f). (14)

The total loss of the i-th user is

Li =

Z
f∈B

Li(f)df. (15)
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We are ready to deduce a formula for the rate loss of the i-th
user as a result of the non-ideal precoding system in (9). Our result

will be given in terms of the matrix Δ. Recall that Δ depends on

the precoder quantization errors E(f).

Denote by Δi,j the (i, j)-th element of the matrix Δ and let

δi(f) = Γ
X
j �=i

Pj(f)

Pi(f)
|Δi,j(f)|2. (16)

Let

ai(f) = δi(f)Γ−1SNRi(f) =
X
j �=i

Pj(f)

Pi(f)
|Δi,j(f)|2SNRi(f),

(17)

qi(Δ, f) =
|1 + Δi,i(f)|2

ai(f) + 1
, (18)

and

ki(f) =
Γ−1SNRi(f)

Γ−1SNRi(f) + 1
. (19)

Note that ai(f) and hence qi(Δ, f) are independent of the

Shannon gap Γ. The next lemma provides a formula for the exact

transmission rate loss due to the errors modelled by the matrices

E(f). The result is stated in terms of quantities q(Δ, f) and the

effective signal to noise ratio, Γ−1SNRi(f).

Lemma 3.2: Let H(f) be the channel matrix at frequency f and

let E(f) be the quantization error as in (7). Let Li(f) be the loss

in transmission rate of the i-th user defined in (14). Then:

Li(Δ, f) = − log2 (1 − ki(f)(1 − qi(Δ, f))) , (20)

where qi(Δ, f) is given in (18) and ki(f) is given in (19).

In particular, if Δi,i(f) = −1 the transmission loss is log2(1+
Γ−1SNRi(f)), where SNRi(f) is defined in (8). Finally, if

Δi,i(f) �= −1 we have

Li(Δ, f) ≤ Max

„
0, log2

„
1

qi(Δ, f)

««
(21)

A usefull corollary of the lemma is

Corollary 3.3: Let H(f) be the p×p channel matrix at frequency

f and let E(f) be the quantization error as in (7). Let Li(f) be the

transmission rate loss of the i-th user defined in (14). Furthermore

assume that ti(f) = max1≤j≤n|Δi,j | < 1 and let Mi(f) =

maxj �=i
Pj(f)

Pi(f)
. Then

Li(Δ, f) ≤ log2

„
1 + (p − 1)Mi(f)t2i (f)SNRi(f)

(1 − ti(f))2

«
. (22)

The proof of the lemma and the corollary is omitted due to space

limitations.

We are now ready to analyze the effect of quantization errors on

the transmission rate of an individual user of the DSL system.

We will not make any further assumptions about the particular

quantization method employed and we will provide upper bounds

for the capacity loss. We do not assume any specific random model
for the values of E(f) because we are interested in obtaining
absolute upper bounds on capacity loss.

We assume that the Power Spectral Density (PSD) of all the users

of the binder is the same. Namely, we assume that Pi(f) = P (f)
for all i = 1, ..., p for some fixed unspecified function P (f). The

justification of this assumption is that in a precoded DSL system

each user will use the entire PSD mask allowed by the regulation

since in such systems no interference is generated to other systems.

The following theorem (the proof is omitted) describes the

transmission rate loss resulting from quantization of the precoder.

Main Theorem 3.4: Let H(f) be the channel matrix of p
twisted pairs in frequency f . Let r(f) = r(H(f)) as in (6), and

assume that r(f) ≤ 1 for all f ∈ B. Assume that the precoder

P is quantized using d ≥ 4 bits. The transmission rate loss of the

i-th user at frequency f due to quantization with d bits, Li(d, f),

is bounded by

Li(d, f) ≤ log2(1 + γ(d, f)SNRi(f)) − 2 log2(1 − v(f)2−d),
(23)

where

γ(d, f) = 2(p − 1)(1 + r(f))22−2d
(24)

and

v(f) =
√

2(1 + r(f)). (25)

In particular, with rmax = maxf∈B (r(H(f)), the transmission

loss in the band B resulting from quantization with d bits, Li(d),

is at most

Li(d) ≤ R
f∈B

log2(1 + γ(d)SNRi(f))df

−2|B| log2(1 − (1 + rmax)2−d+0.5),
(26)

where |B| is the total bandwidth, and

γ(d) = 2(1 + rmax)2(p − 1)2−2d. (27)

We also introduce the relative loss to be

ηi(d) =
Li(d)

Ri
(28)

where Ri is the transmission rate of the i-th user in the Band B
as in (3).

The theorem has a number of interesting consequences . For

example, if rmax ≤ 1 and we consider large values of d, then

the dominant term in the bound is −2|B| log2(1 − 2−d+1.5)

thus for large values of d the loss is about
√

32
ln(2)

2−d bps/Hz per

user. However, for many practical values of the parameters (e.g.

SNRi(f) = 80dB, d ≤ 20, p ≤ 100) the first term of (23) is the

dominant and can not be ignored. We note that the proof provides

the following simple bound on the loss at one tone f :

Li(Δ, f) ≤ 2−d+3.5 + log2(1 + 8(p − 1)SNRi(f)2−2d) (29)

IV. SIMULATION RESULTS
To check the quality of the bounds stated in our theorem

3.4 and its corollaries, we compared the bounds with simulation

results which were based on measured channels. We have used

the measurement campaign conducted by France Telecom R&D as

described in [9]. We studied a bandwidth of 30 MHz. In each bin we

used a measured channel of 28 pairs of length 300m. We quantized

the precoder matrix in each frequency and computed the resulting

channel capacity of each of the 28 users and computed the relative

and absolute capacity loss of each of the users. In each bin we

picked the worst case out of 1000 quantization trials and obtained

a quantity we called maximal loss. The quantity maximal loss is a

random variable depending on the number of bits used to quantize

the precoder matrices. Each value of this random variable provides

a lower bound for the actual worst case that can occur when the
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Fig. 1. Relative Capacity loss vs number of quantizer bits with

perfect CSI in a system of 28 users

channel matrices are quantized. We compare this lower bound with

our upper bounds of theorem 3.4. To obtain relative results we

divided both quantities by Ri. We have checked our bounds in

the following scenario: each user has flat PSD of -60dBm/Hz, the

noise has flat PSD of -140dBm/Hz. The Shannon gap is assumed

to be 10.7dB. As can be seen in Figure 1, the bound given by the

integral (26) is sharp.

V. CONCLUSIONS

In this paper we analyzed finite word length effects on the

achievable rate of vector DSL systems with zero forcing precoding.

The results of this paper provide simple analytic expressions for

the loss due to finite word length. These expressions allow simple

optimization of linearly precoded DSM level 3 systems.

We validated our results using measured channels. Moreover,

we showed that our bounds can be adapted to study the effect

of measurement errors on the transmission loss. In practice for

loop lengths between 300 and 1200 meters, one needs 14 bits to

represent the precoder elements in order to lose no more than one

percent of the capacity.
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