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ABSTRACT
Peak-to-average power ratio (PAR) reduction techniques are

often employed to increase the power efficiency of orthogo-

nal frequency division multiplexing (OFDM) systems. A re-

cently proposed PAR optimization method demonstrates how

the PAR can be minimized when free subcarriers and a certain

distortion allowance on the error vector magnitude (EVM)

are available. In this paper, we derive the lower bound on

the capacity for such a system and investigate the capacity-

maximizing number of free subcarriers that should be used.

Index Terms— Orthogonal frequency division multiplex-

ing (OFDM), peak-to-average power ratio (PAR), signal-to-

noise-and-distortion ratio (SNDR)

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is a widely

used modulation method that has high spectral efficiency and

exhibits robustness against frequency-selective fading chan-

nels. However, a significant drawback of OFDM is its low

power efficiency due to the large peak-to-average power ra-

tios (PARs) of its time-domain waveforms.

Many methods have been proposed to reduce the PAR

of OFDM signals by constraining the distortion energy [1-3]

or by projecting the distortion energy onto “free” subcarriers

[4]. In [5], PAR reduction was cast as a convex optimiza-

tion problem. In that work, PAR is minimized by exploiting

the allowed distortion on the data subcarriers and by utiliz-

ing the “free” subcarriers. By exploiting the IFFT/FFT struc-

ture of OFDM, the interior-point method (IPM) can be cus-

tomized for this optimization problem to provide good per-

formance with relatively low complexity. Additionally, in [6]

the same authors analyzed the signal-to-noise ratio (SNR) of

the PAR-minimized signals to derive the optimal error vector

magnitude (EVM) thresholds for transmitter power consump-

tion minimization and channel capacity maximization.

However, in the presence of nonlinear distortions, the chan-

nel capacity was found in [7] to be a function of the signal-to-

noise-and-distortion ratio (SNDR), as opposed to the SNR.
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The optimization scheme in [5] is a highly nonlinear oper-

ation, thus the SNDR analysis is pertinent. Moreover, the

problem of finding the optimal number of free subcarriers,

which significantly impacts the performance of the optimiza-

tion algorithm, was not solved. Although increasing the num-

ber of free subcarriers to reduce the PAR can improve the

SNDR and the capacity per channel, the total system capac-

ity is not necessarily improved because more free subcarriers

mean fewer subcarriers for data transmission. In fact, we will

show that the total system capacity is concave in the number

of free subcarriers and thus the capacity-maximizing number

of free subcarriers can be found.

In this paper, we build upon the work of [6] and analyze

the SNDR for the PAR-minimized OFDM signals. Using this

SNDR formulation, the relationship between the number of

free subcarriers and the system capacity will be established.

Finally, we will investigate the optimal number of free sub-

carriers for different channel noise levels and different EVM

thresholds.

2. SYSTEM MODEL

The frequency-domain OFDM symbol can be decomposed

into two non-overlapping sets: data subcarriers and free sub-

carriers denoted by sets of indices Kd and Kf , respectively.

By denoting their cardinalities as |Kd| = d and |Kf | = f , we

have d + f = N where N is the total number of subcarri-

ers. For simplicity, pilot subcarriers are not considered in this

paper, but the results can be easily extended to systems with

pilot signals.

The frequency-domain OFDM symbol can be denoted as

X = [X0, X1, · · · , XN−1]T . It consists of encoded data

XKd
∈ Ω, where Ω is an ideal constellation, and free sub-

carriers that can take on any complex value XKf
∈ C subject

to the spectral mask constraints. Prior to cyclic extension,

which does not impact the PAR [4], the L-times oversampled

baseband OFDM signal can be expressed as

x[n] = IFFTL(X)[n] =
1√
N

LN−1∑
k=0

X ′
ke

j2πkn
LN , (1)

where X′ = [X0, · · · , XN
2 −1, 0, · · · , 0, XN

2
, · · · , XN−1]T

is generated by zero padding X with (L − 1)N zeros; corre-
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spondingly, IFFTL designates the L-times oversampled wave-

form in the time domain that maintains the same average power

with X as 1
LN ‖x‖2

2 = 1
N ‖X‖2

2. Define the PAR of an OFDM

symbol as

PAR =
max

n∈{0,··· ,LN−1}
|x[n]|2

E[|x[n]|2] . (2)

Assume that a linear or linearized Class-A power ampli-

fier (PA) is used in the transmitter. For a given DC power

Pdc, the peak output power is limited to Pmax = Pdc/2.

In order to achieve the maximum average power efficiency,

symbol-wise linear scaling should be applied such that the

peak power of each output OFDM symbol achieves Pmax [8].

At the receiver, the scaling factors can be regarded as a part

of the channel and compensated for by equalization. There-

fore, in flat-fading channels, the instantaneous peak-signal-

to-noise power ratio (PSNR) for all symbols is

PSNR =
h · Pmax

N0
, (3)

where h is the channel gain and N0 is the power of the addi-

tive white Gaussian noise per subcarrier.

3. PAR MINIMIZATION

Let Xo = [Xo
0 , Xo

1 , · · · , Xo
N−1]

T denote the PAR-minimized

OFDM symbol for a given set of constraints. One of the con-

straints is the EVM which is defined as

ε(X,Xo) =

√
1
d

∑
k∈Kd

|Xk − Xo
k |2

P0
, (4)

where P0 is the average power of the constellation Ω [9]. In

addition to the EVM constraint, the free subcarriers should

satisfy

E[|Xo
k |2] ≤ Mk, k ∈ Kf , (5)

where Mk is the spectral mask requirement.

The convex PAR minimization problem can be cast as the

minimization of the time-domain waveform peak while keep-

ing the average data power bounded from below, i.e.

Minimize
Xo

p (6)

Subject to xo = IFFTL(Xo) (7)

|xo[n]| ≤ p, n ∈ {0, · · · , LN − 1} (8)

ε(X,Xo) ≤ e (9)

|Xo
k |2 ≤ Mk, k ∈ Kf (10)

1
d

∑
k∈Kd

�[X∗
k(Xo

k − Xk)] ≥ −P0
e2

2
,(11)

where e is the EVM threshold, (11) seeks to maintain the av-

erage data power [5] and (10) provides a stricter but solvable

constraint than (5). This optimization problem can be solved

by the IPM. After optimization, the ratio of the power in the

data subcarriers to the total power becomes a function of the

EVM threshold e and the number of free subcarriers f , i.e.,

rdata(e, f) = E

[ ∑
k∈Kd

|Xo
k |2∑

k∈Kd∪Kf
|Xo

k |2
]

. (12)

Let us denote the peak power and the symbol-wise PAR of the

ith PAR-minimized symbol by

Ppeak(e, f) = max
n∈{0,··· ,LN−1}

|xo
i [n]|2, (13)

PARs(e, f) =
Ppeak(e, f)

1
LN ‖xo

i ‖2
2

, (14)

respectively. The above quantities can be determined through

simulations.

As we discussed in Section 2, the PAR-minimized signal

should be scaled symbol-wise so that the peak output power

of all symbols stays at Pmax to ensure maximum power ef-

ficiency. Thus, the signal transmitted through the channel

is xo
i [n]

√
Pmax/Ppeak(e, f). The average output power be-

comes

Pout(e, f) = E

⎡
⎣

∣∣∣∣∣xo
i [n]

√
Pmax

Ppeak(e, f)

∣∣∣∣∣
2
⎤
⎦ (15)

= Pmax · E
[ 1

LN ‖xo
i ‖2

2

Ppeak(e, f)

]
(16)

=
Pmax

PARav(e, f)
, (17)

where

PARav(e, f) =
(

E

[
1

PARs(e, f)

])−1

. (18)

Thus, (17) and (18) imply that the harmonic mean of the ran-

dom variable PARs(e, f) is a meaningful statistic.

4. PARAMETER OPTIMIZATION

The PAR-minimized signal Xo is a highly nonlinear function

of the original OFDM symbol X. According to the Bussgang

Theorem, Xo can be expressed in terms of X as [1]

Xo
k = αXk + Qk, k ∈ Kd, (19)

where the scaling factor α = E[X∗
kXo

k ]/E[|Xk|2] (k ∈ Kd)
is chosen so that the distortion term Qk is uncorrelated with

Xk. In the presence of Qk, the capacity of the data subcarriers

becomes a function of the SNDR [7] which is defined as

SNDR =
hα2σ2

x

hσ2
q + N0

, (20)
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where σ2
x and σ2

q are the variances of Xk and Qk, respectively.

Since there is not a closed form expression linking X to

Xo, it is difficult to analyze α theoretically. However, we

can use some simplifying assumptions in order to gain some

insight regarding the SNDR. First, let us assume that the error

vector X − Xo is uncorrelated with the data vector X. Next,

when e is not too large, due to the fact that the EVM of the

optimized signals is very close to the threshold ε(X,Xo) ≈
e [5], the average distortion power on each data subcarrier

can be approximated by e2σ2
x. Thus, the rest of the power

sums up to α2σ2
x ≈ (1 − e2)σ2

x. These approximations have

been verified by computer simulations, the results of which

are omitted here due to space limitations.

Thus, the average SNDR for the data subcarriers is

SNDR ≈ (1 − e2)rdata(e, f)Pout(e, f)
e2rdata(e, f)Pout(e, f) + d·No

N ·h

=
(1 − e2)rdata(e, f)

e2rdata(e, f) + d
N · PARav(e,f)

PSNR

. (21)

Notice that this formulation differs from the SNR expression

in [6] in three important ways: i) the PAR in [6] was defined

at the 10−2 probability level, whereas we have demonstrated

that PARav(e, f) as defined in (18) is more meaningful; ii)

the degradation to the useful signal as quantified by the factor

1 − e2 is taken into account in (21), which was not consid-

ered in [6]; iii) the free subcarriers are considered in terms of

rdata(e, f) in (21).

Because the distortion term Qk in (19) is approximately

Gaussian distributed [6], the lower bound of the capacity on

each data subcarrier is Ck = log2(1 + SNDR) bits (∀k ∈
Kd)[7] and the total system capacity per symbol is

C =
∑

k∈Kd

Ck = d · log2(1 + SNDR) bits. (22)

Finally, when using the PAR minimization algorithm of

Section 3, the pair (e,f ) should be selected so that the capac-

ity is maximized. However, this two-variable optimization

problem is difficult to solve and will be the subject of future

research. In this paper, we will focus on optimizing the num-

ber of free subcarriers for a given EVM threshold e, i.e.

Maximize
f

C (23)

Subject to PSNR, e, Mk (k ∈ Kf ), (24)

which can be solved by searching through all possible values

of f ∈ {0, 1, ..., N}.

5. SIMULATIONS

In all simulations, N = 64, L = 4 and the spectral mask as

defined in the 802.11a standard were used [9]. The OFDM

symbols were drawn from a QPSK constellation. Simula-

tion results show that the distribution of the optimized PAR
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Fig. 1. PARav(e, f) and average power efficiency η(e, f) as a

function of the number of free subcarriers; e = −16dB.
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Fig. 2. System capacity as a function of PSNR for different numbers

of free subcarriers f = 0, 2, · · · , 30; e = −16dB.

is independent of the choice of the constellation. The EVM

threshold was e = −16dB for the results shown here, but the

proposed method works for any other EVM values specified

in the standard. Moreover, we assume that the free subcarriers

are selected in pairs. We also assume that the free subcarriers

utilized for PAR minimization are the edge-most ones since

they usually have stricter power constraint in order to avoid

spectral regrowth caused by the PA nonlinearity.

Fig. 1 shows PARav(e, f) and the corresponding aver-

age power efficiency η(e, f) = 0.5/PARav(e, f). The power

efficiency increases monotonically as f increases. For the

Class-A PA with a fixed DC power, its power consumption

is constant for all cases, thus, the higher the power efficiency,

the larger the average output power Pout(e, f).
The system capacity (22), in terms of the SNDR expres-
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Fig. 3. System capacity as a function of the number of free subcar-

riers f for PSNR= 0, 1, · · · , 20dB; e = −16dB.

sion (21) and the number of data subcarriers d, can be calcu-

lated as a function of PSNR for different f values, as illus-

trated in Fig. 2. The intersection of these curves shows that

the optimal f is dependent on the PSNR. Moreover, it proves

that optimization over f is important: a poor choice of f can

degrade the PSNR by as much as 4dB.

In Fig. 3, by plotting the system capacity as a function of

f for different PSNR values, the results can be shown more

clearly. Moreover, the optimal choice of f depends on the

PSNR, as can be seen in Fig. 4. For large PSNR values,

fewer free subcarriers are needed to achieve the maximum

system capacity, which agrees with intuition. In this region,

using more subcarriers for further PAR reduction in order to

increase the average output power will not significantly im-

prove the SNDR. It will, however, reduce the system capac-

ity because fewer subcarriers are used for data transmission.

Thus, transmitting data on more subcarriers may benefit the

capacity despite causing a higher PAR and a lower power ef-

ficiency.

Finally, if no channel state information is available at the

transmitter, the optimal number of free subcarriers can be de-

termined offline by comparing the expectation of the system

capacity over a practical PSNR range. Given an equiprobable

PSNR ranging from 0dB to 20dB, for instance, our analysis

shows that the optimal f is 10 for e = −16dB in the 802.11a

standard [9].

6. CONCLUSIONS

In this paper, we proposed a novel method for determining the

capacity-optimizing number of free subcarriers that should be

used in the PAR minimization algorithm. The results demon-

strated that the optimal number of free subcarriers is a monoton-

ically decreasing function of the peak-signal-to-noise power
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Fig. 4. The optimal number of free subcarriers f for PSNR=
0, 1, · · · , 20dB; e = −16dB.

ratio. Additionally, it was shown that improperly choosing the

number of free subcarriers could lead to a significant amount

of information loss. In our future research, we will investigate

two-variable capacity maximization in both the EVM and the

number of free subcarriers.
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