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ABSTRACT
One of the main drawbacks of the OFDM modulation is the high
peak-to-average power ratio (PAPR) of the transmitted signal. In
this study, we devise a low-complexity transmitter that mitigates the
PAPR problem and satisfies multiple requirements of a given sys-
tem, such as error vector magnitude (EVM) constraints, minimum
transmitted power of the data symbols, among others. To reduce the
PAPR, we use the adaptive projected subgradient method to suppress
a sequence of convex cost functions over closed convex sets describ-
ing desired properties of the transmitted signal. Numerical examples
show that the proposed scheme reduces the PAPR to reasonable lev-
els with few iterations.

Index Terms— OFDM, adaptive projected subgradient method,
optimization methods

1. INTRODUCTION

OFDM symbols have high power peaks compared with the mean
power. Consequently, to prevent distortion of the transmitted signal,
the power amplifiers of OFDM systems need to operate in the linear
region for a wide range of instantaneous input power. Unfortunately,
amplifiers with a large dynamic range are either costly or power in-
efficient. In general, the power consumption is more related to the
peak power output rather than the average power output [1]. There-
fore, peak-to-average power ratio (PAPR) reduction methods have
been investigated to alleviate the dynamic range requirements of the
amplifiers.

Techniques to mitigate the PAPR problem include, among oth-
ers, amplitude clipping and filtering, coding, selected mapping, in-
terleaving, tone reservation (TR), and active constellation extension
(see [2] and the references therein for a good tutorial paper on this
topic). No single technique is the best solution for all possible appli-
cations, so in this study the focus is on schemes in that all processing
is done at the transmitter. More precisely, we propose transmitters
based on a combination of the TR technique with others that slightly
disturb the data symbols.

In systems applying the TR method, the transmitter reduces the
PAPR problem by sending dummy symbols – i.e, symbols not car-
rying data – in some selected subcarriers [1, 3]. The optimal values
of the dummy symbols are the solution of a certain convex optimiza-
tion problem related to the PAPR. TR-based transmitters differ in the
choice of the (convex) cost function, the possible constraint sets, and
the algorithm used to find (or approximate) an optimal solution.

A promissing low-complexity TR-based algorithm is the active
set approach [1], a special case of the subgradient method [3] based
on Polyak’s algorithm. The subgradient method is very efficient
when a constraint set is imposed and the projection onto the set is
computationally simple. However, when the constraint is the inter-
section of multiple sets, the projection onto the intersection is com-
putationally expensive in general, so the subgradient method in [3]
loses its basic advantage – the low complexity. Multiple constraint

sets can be imposed to increase the PAPR reduction capability of the
system. They can describe, for example, the allowed range of distor-
tion of the data-bearing carriers [4]. Unfortunately, most proposals
using multiple constraints solve the optimization problem with com-
putationally complex interior point methods.

Recently, the adaptive projected subgradient method (APSM)
has been introduced in [5] (see also [6]) to extend Polyak’s algo-
rithm to the case where we aim at suppressing a sequence of convex
cost functions. In addition, the APSM can also asymptotically min-
imize (with low complexity) the sequence of cost functions over the
intersection of many closed convex sets [7]. We devise a sequence
of cost functions closely related to the PAPR and use the APSM to
suppress this sequence over closed convex sets describing desired
characteristics of the OFDM symbol such as those introduced in [4].
Numerical simulations show that the resulting transmitters have low
complexity and reduce the PAPR to a reasonable level with few iter-
ations.

2. PRELIMINARIES

2.1. Adaptive projected subgradient method (APSM) [7]

For every vector v ∈ R
M , we define the norm of v by ‖v‖ :=√

vT v, which is the norm induced by the Euclidean inner product
〈v, y〉 := vT y for every v, y ∈ R

M . For a vector v ∈ C
M , the

norm of v is defined by ‖v‖ :=
√

vHv. For v = [v1 v2 . . . vM ]T ∈
C

M , the infinity norm of v is defined by ‖v‖∞ := max1≤i≤M{|vi|}.
A set is said to be convex if v = αv1+(1−α)v2 ∈ C ⊂ R

M for ev-
ery v1, v2 ∈ C and 0 ≤ α ≤ 1. Similarly, a set C ∈ C

M is convex
if v = αv1 + (1− α)v2 ∈ C for every v1, v2 ∈ C and 0 ≤ α ≤ 1
(α ∈ R). Let C ⊂ R

M be a nonempty closed convex set. The pro-
jection operator PC : R

M → C maps v ∈ R
M to the unique vector

PC(v) ∈ C satisfying ‖v − PC(v)‖ = miny∈C ‖v − y‖.
Let the operator T : R

M → R
M be the concatenation (or

composition) of projections onto m closed convex sets Ci (i =
1, . . . , m), i.e., T := PCmPCm−1

· · ·PC1
, where we assume∩m

i=1Ci �=
∅, andΘn : R

M → [0,∞) (∀n ∈ N) be a sequence of continuous
convex functions. The subdifferential of Θn at a given point y is the
set of all subgradients of Θn at this point, i.e.,

∂Θn(y) :=

{a ∈ R
M |Θn(y) + 〈x − y, a〉 ≤ Θn(x),∀x ∈ R

M} �= ∅.

For an arbitrarily given w0 ∈ R
M , the adaptive projected sub-

gradient method minimizes asymptotically Θn over
Tm

i=1 Ci with
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the sequence (wn)n∈N given by

wn+1 :=

8

>

<

>

:

T

„

wn − λn
Θn(wn)

‖Θ′n(wn)‖2 Θ
′

n(wn)

«

,

if Θ′
n(wn) �= 0

T (wn) otherwise,

(1)

where Θ
′

n(wn) ∈ ∂Θn(wn), ∂Θn(wn) is the subdifferential of
Θn at wn, and 0 ≤ λn ≤ 2. For the convergence properties of the
algorithm in (1), the reader is referred to [5, 7].

2.2. System Model

Assume a transmitter sending N symbols with the OFDM modu-
lation. We denote the OFDM constellation (the OFDM symbol in
frequency domain) by c := [c1 · · · cN ]T ∈ C

N . A discrete-time ap-
proximation of the continuous-time OFDM symbol can be obtained
by applying the inverse discrete Fourier transform (IDFT) with L-
times oversampling to c [1, 3, 4], i.e.,

x = F c,

where x := [x1 . . . xNL]T ∈ C
NL is the discrete time-domain

OFDM symbol and the element of the lth row and mth column of
the matrix F ∈ C

NL×N is given by

F lm =
1√
NL

ej2π(l−1)[m−(N/2)]/(NL) l = 1, . . . , NL

m = 1, . . . , N.

By using L ≥ 4, the power peaks of the vector x are good ap-
proximations of the power peaks of the continuous-time transmitted
signal [4]. For simplicity, we assume that D subcarriers are used
for data transmission and the remaining N − D subcarriers can be
used for PAPR reduction. Let I := {i1, . . . , iD} be the set of in-
dices indicating the subcarriers available for data transmission, i.e.,
i ∈ I iff ci is encoded data. As in [4], we denote the diagonal carrier
selection matrix by S = diag(S1, . . . , SN ) ∈ R

N×N , where

Si =

j

1, if i ∈ I
0, otherwise.

The basic idea of PAPR reduction algorithms is to transmit an
OFDM constellation ec = [ec1 . . . ecN ]T , which is a modified version
of c, so that the PAPR of ex = Fec is lower than that of x = F c. For
a possibly modified discrete signal ex = Fec ∈ C

NL, we define the
PAPR as

PAPR =
‖ex‖2∞

1

NL
E (‖F Sec‖2)

=
‖ex‖2∞

1

NL
E (‖Sec‖2)

. (2)

In this study, we only consider PAPR reduction methods that do
not require any modification in the receiver, i.e., the receiver is able
to recover the transmitted symbol ci (i ∈ I) directly from eci.

2.3. PAPR optimization based on Polyak’s method

In [3], the transmitted constellation ec = F H
ex is decomposed into

two vectors ρ and ϕ such that

ex = Γρ + Uϕ, (3)

where ρ ∈ C
N−D is the vector of tones ci (i /∈ I) to be used for

PAPR reduction and Γ ∈ C
NL×(N−D) is a matrix with the corre-

sponding columns of F . Similarly, the vector ϕ ∈ C
D is the vector

containing the data symbols ci (i ∈ I), and U ∈ C
NL×D is the

matrix with the corresponding columns of F .
With the decomposition in (3), if only ρ is allowed to change,

ideal PAPR reduction algorithms should minimize J(ρ) := ‖ex‖2∞
subject to a constraint describing desired characteristics of the vec-
tor ρ. However, instead of minimizing J(ρ) directly, iterative al-
gorithms can reduce the PAPR to reasonable levels with few low-
complexity iterations when an alternative cost function is used. Such
a cost function is used in the optimization problem given by [3]

ρ
� ∈ arg min

ρ∈Cs

K
X

l=1

ωl|exkl
|p, (4)

whereK is the number of peaks to be considered, ex := [ex1 . . . exNL]T ,
|exk1

| ≥ |exk2
| ≥ · · · ≥ |exkNL

|, the ordered tuple (k1, . . . , kNL) is
a permutation of (1, . . . , NL), ωl is a non-negative weight, p is the
integer exponent, andCs is a closed convex set that describes desired
characteristics of the signal (e.g., power spectrum density masks). If
the projection onto the set Cs is simple, Polyak’s algorithm can be
used to approximate ρ� with few iterations and low complexity [3].

In certain cases, replacing Cs by a set that is the intersection
of many closed convex sets is useful to reduce the PAPR problem
further. In these situations, Polyak’s method can only be applied if
the exact projection onto this intersection is computed, a potentially
computationally expensive task. In addition, for large K, finding
good values for the weights can be challenging. The weights should
the same for all iterations of the algorithm, otherwise Polyak’s method
does not guarantee convergence because the cost function changes
at each iteration. In Sect. 3 we introduce an algorithm that can deal
with multiple sets and can give larger weights to larger peaks at each
iteration. Before proceding with the proposed algorithm, we give ex-
amples of sets that can be used to reduce the PAPR problem further.

2.4. PAPR problem with multiple convex constraint sets

The problem in (4) does not allow any distortion in the data symbols
ci (i ∈ I). However, most standards take into account the imper-
fections of practical transmitters. A constellation ec is acceptable if it
belongs to the error vector magnitude (EVM) constraint set [4, 8]

CEVM := {ec ∈ C
N | ‖S(ec − c)‖ ≤ ε}, (5)

where ε ≤ EVMmax

√
DP0, P0 is the average power of the carrier

modulation, and EVMmax is maximum allowed distortion, usually
specified by the standard being implemented.

To reduce the PAPR without reducing the average power of the
data, we can impose the constraint ‖Sec‖2 ≥ ‖Sc‖2, which defines
a nonconvex set. A convex relaxation of this constraint is obtained
by expanding ‖S(ec − c)‖2 (as in [4])

2Re(ecH
Sc) = ‖Sec‖2 + ‖Sc‖2 − ‖S(ec− c)‖2

≥ 2‖Sc‖2 − ‖S(ec− c)‖2
≥ 2‖Sc‖2 − ε2,

where the last inequality comes from the set CEVM. The power
constraint set is thus

CP :=

j

ec ∈ C
N |Re(ecH

Sc) ≥ ‖Sc‖2 − ε2

2

ff

. (6)

Ideally, the proposed algorithm in Sect. 3 should find ec� given
by

ec
� ∈ arg min

ec∈CI

‖Fec‖2∞, (7)
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where CI := CEVM ∩ CP . Note that additional constraints (such
as those considering power spectral density masks and power over-
heads [4]) can be easily introduced in the proposed algorithm. For
brevity of exposition, we only consider the sets CEVM and CP in
this study.

Next, we devise a related cost function and a low-complexity
algorithm that can provide a good estimate of ec� with few iterations.

3. PROPOSED ALGORITHM

For any vector v ∈ C
N , we define the “underline” operator as

v :=
h

Re(vT ) Im(vT )
iT

=: [v1 . . . v2N ]T ∈ R
2N .

The “underline” version of a set C ⊂ C
N is given by

C := {v = [vT
R v

T
I ]T ∈ R

2N |
vR + jvI ∈ C, vR, vI ∈ R

N},
where j =

√−1.
Therefore, the “underline” versions of the sets CEVM and CP

are equivalently expressed by

CEVM :=

(

ec ∈ R
2N |

‚

‚

‚

‚

»

S 0

0 S

–

(ec− c)

‚

‚

‚

‚

2

≤ ε2
)

and

CP =

j

ec ∈ R
2N |ecT

»

S 0

0 S

–

c ≥ ‖Sc‖2 − ε2

2

ff

.

We also define the function

φk(ec) := ecT
M kec, (8)

where

M k =

»

Re(fH
k fk) −Im(fH

k fk)
Im(fH

k fk) Re(fH
k fk)

–

,

fk ∈ C
1×N is the kth row of the matrix F , and k ∈ {1, . . . , NL}.

Note that, for given k and ec, the function φk(ec) satisfies φk(ec) =
|exk|2.

At each iteration, the proposed iterative algorithm aims at ap-
proaching a minimizer of

Θn(ec) := h

 

K
X

j=1

ω
(n)
j φkj

(ec)− γ

!

, (9)

where h(x) = max(x, 0), (k1, . . . , kK) are K indices correspond-
ing to the elements of ex = Fec with the K largest magnitude, ω(n)

j

are non-negative weights (at iteration n) satisfying
PK

j=1 ω
(n)
j = 1,

and γ is a non-negative constant (c.f. Proposition 1). The cost func-
tion Θn(ec) is essentially a measure of the (weighted) total energy
of the K largest magnitude components of the vector ex (recall that
φk(ec) = |exk|2). Note that, unlike the cost function in (4), the
weights in (9) are allowed to change at each iteration, hence the cost
function is time varying (see also [5, 6]).

For a given estimate ecn of ec�, to decrease rapidly the largest
peak of exn = Fecn considered in (9), we assign larger weights to
peaks with larger magnitude. We propose the following weighting

scheme:

ω
(n)
j =

φkj
(ecn)

PK
l=1 φkl

(ecn)
, j = 1, . . . , K, (10)

where (k1, . . . , kK) are as defined in (9). The summation in (10) is
only a constant used to guarantee that

PK
j=1 ω

(n)
j = 1.

Applying the scheme in (1) to suppress the sequence Θn(ec) in
(9) over CI := CEVM ∩ CP , for an arbitrary ec0 ∈ R

2N , we arrive
at sequence given by

ecn+1 :=

8

>

<

>

:

PCEVM
PCP

„

ecn − λn
Θn(ecn)

‖Θ′
n(ecn)‖2 Θ′

n(ecn)

«

,

if Θ′
n(ecn) �= 0

PCEVM
PCP

(ecn) otherwise,
(11)

where

Θ′
n(ecn) =

8

>

>

<

>

>

:

1
PK

l=1 φkl
(ecn)

PK
j=1 φkj

(ecn)(Mkj
+ M T

kj
)ecn,

if Θn(ecn) > 0

0, otherwise,

PCP
(ec) = ec −

„

ec
T
r − ‖Sc‖2 +

ε2

2

«

r

‖r‖2 ,

r =

»

S 0

0 S

–

c,

(k1, . . . , kK) are as defined in (9), and the projection onto CEVM is
shown below.

Fact 1 Let ec be a point outside CEVM. Then the projection onto
CEVM, denoted by g := [g

1
. . . g

2N
]T , is given by

g
i
=

8

<

:

eci + κci

1 + κ
, if i ∈ I or i−N ∈ I,

eci, otherwise,
(12)

where

κ =

‚

‚

‚

‚

»

S 0

0 S

–

(ec − c)

‚

‚

‚

‚

ε
− 1.

Proof: The proof follows from [9, Th. 3.4-1].
(NOTE: i) Multiplying S by a vector is a simple operation because
we only need to set to zero some elements of the vector. Therefore,
by also using (Mk + M T

k )ec = 2[Re(fH
k exk)T Im(fH

k exk)T ]T and
φk(ec) = |exk|2, there is no need to perform any matrix–vector multi-
plication in (11) once Fecn is known. The calculation ofFecn, which
is an IDFT, dominates the complexity of the algorithm, but it can be
computed with efficient algorithms such as the inverse fast Fourier
transform. ii) Owing to the special combination of CEVM and CP ,
it is guaranteed that ecn ∈ CI .)

In summary, the iteration in (11) approximates ec� in (7) by sup-
pressing the time-varying cost function (9) over CI . In the next
proposition, we show that the estimate of ec� can be improved at
each iteration.

Proposition 1 (On the convergence of the algorithm)
Let μ = minec∈CI

‖Fec‖2∞, then following holds.
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• (a) If γ ≥ μ and λn ∈ (0, 2), then the iteration in (11)
satisfies ‖ecn+1 − ec�‖ ≤ ‖ecn − ec�‖ for any c� in (7).

• (b) For a given estimate ecn of any ec� in (7) such that
PK

j=1 ω
(n)
j φkj

(ecn) − μ > 0, if γ in (9) is set to zero, the
iteration in (11) with a step size within the range

0 < λn < 2

„

1− μ

Θn(ecn)

«

(13)

guarantees that ‖ecn+1 − ec�‖ < ‖ecn − ec�‖.
Proof: The proof is omitted due to lack of space.

Knowledge of minec∈CI
‖Fec‖2∞ is not available in general, but

Proposition 1(a) suggests practical transmitters using γ with a value
satisfying Θn(ec�) = 0 for most transmitted symbols. Alternatively,
Proposition 1(b) suggests the choice γ = 0 with a decreasing step
size such as λn < 2/n. Even if the conditions of Proposition 1(b)
are violated with such a choice, practically, after some iterations we
can expect that the step size will be small enough so that the condi-
tions are again satisfied. We show in the next section that the second
choice of parameters (γ = 0 and λn < 2/n) gives excellent perfor-
mance with few iterations in practice.

4. SIMULATIONS AND FINAL REMARKS

In Fig. 1, we compare the following approaches:
• (subgradient) the subgradient method applied to the cost func-
tion in (4) with ωl = 1, p = 2, K = 20, Cs := C

N−D , and
step size λn = 2/n (except for the step size1, other parame-
ters of the simulations are the same as in [3, Sect. 4]);

• (proposed-uniform) the proposed algorithm withK = 20 and
uniform weighting (so that the gain of applying (10) is high-
lighted);

• (proposed) the proposed algorithm in (11) with K = 20
(weights as in (10));

• (subgradient-optimal)
ex = Γρ� + Uϕ, where ρ� = arg minρ∈CN−D ‖Γρ +
Uϕ‖∞, which is the best performance that can be obtained
with the subgradient method in [3];

• (proposed-optimal) the ideal performance of the proposed al-
gorithm, i.e., the performance of c� in (7) (see also [4]).

For the first three methods, the iterative algorithms, the number
of iterations is indicated in the figure. The setCEVM allows an EVM
up to −20dB. We do not assume knowledge of minec∈CI

‖Fec‖2∞,
so we set the parameter γ of the proposed algorithms to zero and the
step size to λn = 1.9/n (see discussion after Proposition 1), where
n is the iteration number.

The simulated system is based on the 802.11a standard [8], where
D = 52 out ofN = 64 carriers contain 16-QAM modulated data or
pilot symbols. The empirical PAPR complementary cumulative dis-
tribution function (CCDF) is obtained by simulating 100,000 OFDM
symbols, the oversampling factor of which is set to L = 4 (for the
algorithms and the CCDF plot).

Compared to the subgradient approach of [3], the proposed al-
gorithms are able to find an OFDM symbol with much lower PAPR
because all components of the vector c are allowed to change. The
uniform weighting scheme is clearly outperformed by the weighting
scheme in (10), the transmitter of which achieves the performance
limit of the subgradient method in only three iterations. Note that
most of the performance gains are obtained in three iterations be-
cause the step size becomes too small for n ≥ 4.

1In the present simulation, the step size used in [3, Sect. 4] resulted in
worse performance than λn = 2/n.
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Fig. 1. Empirical PAPR CCDF of the algorithms.

To reduce the complexity of the proposed transmitters, we can
easily modify them in such a way that only a few selected data car-
riers are distorted. Finally, different (nonsmooth) cost functions,
possibly taking into account the nonlinearities of the amplifiers, and
more sets can also be easily applied to the proposed algorithm.
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