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ABSTRACT
Maximum Likelihood (ML) equalization for Orthogonal Fre-
quency Division Multiplexing (OFDM) over time- and fre
quency- selective channels is analyzed in this paper. An ap-
proximate expression for bit error rate (BER) performance of
the ML equalizer with a limited number of taps is developed,
which subsumes the matched lter bound (MFB) equaliza-
tion performance as a special case, and which saves on inten-
sive time-consuming empirical simulations. Numerical simu-
lations validate our approximate expression.

Index Terms— Time-varying channels, Multipath chan-
nels, Maximum likelihood detection

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is a
high-rate transmission technique, which mitigates inter- sym-
bol interference (ISI) by the insertion of cyclic pre x (CP)
at the transmitter and its removal at the receiver. One ma-
jor drawback of OFDM is its sensitivity to channel tempo-
ral variations, which arise from the relative motion between
the transmitter and the receiver as well as from the presence
of the carrier frequency offset (CFO) due to the oscillators’
mismatch. The orthogonality between the subcarriers is thus
destroyed and inter-carrier interference (ICI) that adversely
degrades the system performance is generated. While the ICI
attributed to CFO may be compensated for at the receiver, the
ICI from the mobility-induced Doppler spread is not easily
suppressed, since signals from different paths have different
Doppler frequencies.
For slowly time-varying channel, assuming that the chan-

nel varies temporally in a linear fashion, a frequency-domain
equalizer was presented in [1]. Block-wise linear equalizers
based on zero-forcing (ZF) and minimummean squared error
(MMSE) criteria were considered in [2]. On the other hand, to
mitigate the effects of ICI and to reduce the equalization com-
plexity of block-wise equalizers, an iterativeMMSE equalizer
with linear preprocessing was also proposed in [3]. Special
channel structures are exploited to develop low-complexity
linear equalizer [4]. In [5], a Viterbi-type maximum like-
lihood (ML) equalization in the frequency domain was pro-

posed to suppress the ICI, by utilizing the structure of the ICI
and the null (or virtual) subcarriers, which are originally set
in each OFDM symbol to mitigate interferences from/to adja-
cent OFDM channels.
In theory, ML equalization that takes into account all the

ICI terms achieves the minimum block error rate. But in
practice, only a limited number of ICI terms could be com-
pensated due to hardware limitation. To see the effects of
the number of taps of the ML equalizer on the performance,
an approximate expression for bit error rate (BER) perfor-
mance of the ML equalizer is developed, which subsumes the
matched lter bound (MFB) equalization performance [6] as
a special case. The bene t conferred by the use of this BER
expression to measure the ML performance is many fold. It
helps to enhance our understanding of the effect of channel
statistics on BER. At the same time, since it is simple to
generate, it renders time-consuming simulations obsolete and
make performance comparisons easy. Numerical simulations
are provided to validate our approximate expression.

2. OFDM OVER DOUBLY SELECTIVE CHANNELS

We consider point-to-point Orthogonal Frequency Division
Multiplexing (OFDM) transmissions over doubly ( time- and
frequency-) selective fading channels. For notational simplic-
ity, we only deal with one OFDM symbol duration.
Let the number of subcarriers be N . At the transmitter,

a serial information data sequence {s0, s1, . . . , sN−1} under-
goes serial-to-parallel (S/P) conversion to be stacked into one
OFDM symbol. Subsequently, an N -points inverse discrete
Fourier transform (IDFT) follows to produce the N dimen-
sional data, which is parallel-to-serial (P/S) converted. A
cyclic pre x (CP) of length Ncp is appended to the tail of
the data sequence in order to mitigate the multipath effects.
The transmitted symbols {u(n)} can be expressed as

u(n) =
1√
N

N−1∑
k=0

skej 2πkn

N , n ∈ [−Ncp, N − 1]. (1)

The channel has maximumorderL. We assume thatNcp ≥
L so that there is no inter-symbol interference (ISI) between
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OFDM symbols. Without loss of generality, the discrete-time
baseband equivalent description of the nth received sample is
expressed as [5]

y(n) =

L∑
l=0

h(n; l)u(n− l) + w(n), (2)

where h(n; l) denotes the lth channel tap at time n and w(n)
the additive white Gaussian noise (AWGN) with zero mean
and variance σ2

w . The channel frequency response at fre-
quency 2πk/N and at time n isHk(n)=

∑L
l=0 h(n; l)e−j 2πkl

N .
After removing the part of the received signal correspond-

ing to CP, we apply a discrete Fourier transform (DFT) on the
received signal to obtain the frequency-domain received sig-
nal for k ∈ [0, N − 1] as

Yk =

N−1∑
n=0

Hk,nsn + Wk, (3)

where

Hk,n=
1

N

N−1∑
m=0

Hk(m)ej 2πm(n−k)
N , Wk=

1√
N

N−1∑
n=0

w(n)e−j 2πkn

N .

Clearly, if the channel is time-invariant, then the chan-
nel frequency response Hk(n) is constant in time n. It fol-
lows thatHk,n = Hk(n)δ(n− k), where δ(·) stands for Kro-
necker’s delta. However, since channels are in general time-
varying due to the relative motion between the transmitter and
the receiver, the ICI term

∑N−1
n=0,n�=k Hk,nsn appears, which

is evident in the R.H.S. of (3). Hence, the one-tap equalizer
cannot compensate for the effects of the ICI, resulting in a
performance oor that increases with the speed of the chan-
nel time variation.

2.1. ML Equalization for ICI Suppression

From the collection of N received samples in (3), we form a
receive vector Y = [Y0, Y1, . . . , YN−1]

T , which is expressed
as

Y = Hs + W , (4)

where Hk,n is the (k + 1, n + 1)st entry of the channel H ,
s = [s0, s1, . . . , sN−1]

T , andW = [W0, W1, . . . , WN−1]
T .

The optimal equalization for the block transmissionmodel
in (4) is provided by the maximum likelihood criterion, which
for a given N × N channel matrix H realization under the
AWGN model detects the transmitted vector s as

sML = argmin
s
‖Y −Hs‖2, (5)

where ‖ · ‖ denotes Euclidean vector norm.
For simplicity of presentation, we utilize a circular index

with respect to N where the index n of a sequence corre-
sponds to n moduloN .

Ignoring the ICI terms which do not signi cantly affect
the kth subcarrier, we may assume that the ICI terms come
only from 2K (K > 0) neighboring subcarriers, i.e.,

Hk,k+n = 0 forK < |n|, n ∈ [0, N − 1].

This gives rise to the so-called nearly banded channel matrix
structure.
Albeit the channel matrix is sparse, an exhaustive search

is nonetheless needed for ML equalization, since ICI terms
appear in a circular fashion. To avoid the exhaustive search,
successive null subcarriers, which are usually embedded in
every OFDM symbol to mitigate interferences from/to adja-
cent OFDM channels, are utilized to develop a Viterbi-type
ML equalization in [5].
Without loss of generality, we put NG1 successive null

subcarriers at the top and NG2 successive null subcarriers at
the bottom of s, i.e.,

sk = 0, k ∈ [0, NG1 − 1], k ∈ [N −NG2 , N − 1]. (6)

We assume that K ≤ NG1 and K ≤ NG2 . Then, we can
consider the rst NG1 and the last NG2 columns of H as
zero vectors. Removing the entries of H corresponding to
null subcarriers, i.e., removing the rstNG1 and the lastNG2

columns ofH , effectively renders the channel matrix exactly
banded. Consequently, it follows from (3) that

Yk =

K∑
n=−K

Hk,nsn + Wk. (7)

Since Yk depends only on 2K +1 instead ofN successive sn,
a dynamic programming, e.g., Viterbi algorithm, can be easily
applied to obtain the maximum likelihood sequence [5].

3. APPROXIMATE BER OF ML EQUALIZER

ML equalization that accounts for all the ICI terms achieves
the minimumblock error rate, whose performance is expressed
as the matched lter bound (MFB) [6]. If the channel ma-
trix is strictly banded, then the Viterbi equalizer described
above attains the MFB. However, even though each out-of-
band entry of the channel matrix may be small, their overall
effect cannot be totally ignored. To analyze the effects of the
residual ICI terms of the ML equalization for doubly selec-
tive channels on BER, let us develop an approximate expres-
sion for BER performance of the ML equalizer with a limited
number of taps, which subsumes MFB as a special case.
For our analysis, we assume a wide-sense stationary un-

correlated scattering (WSSUS) channel model, whose corre-
lation function is characterized by

E{h(n1; l1)h
∗(n2; l2)} = σ2

l1δ(l1 − l2)R(n1 − n2). (8)

This implies that channel coef cients having different delays
are independent but obey the same time-correlation function
R(n).
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Let us de ne

h̃k = [Hk(0), Hk(1), . . . , Hk(N − 1)]T . (9)

Subsequently, it follows from (8) that

E{h̃kh̃
H

k } = cR, (10)

where c =
∑L

l=0 σ2
l , and R represents the N × N channel

correlation matrix with [R]m,n = R(m− n).
We consolidate the 2K +1 received signals to be used for

the equalization of sk into a vector as follows

Y k = [Yk−K , . . . , Yk−1, Yk, Yk+1, . . . , Yk+K ]T . (11)

From (3), Y k can be expressed as

Y k =
N−1∑
n=0

F k,nh̃nsn + W k, (12)

where F k,n is a (2K + 1) × N matrix de ned with W =
e−j2π/N as

F k,n =
1√
N

⎡
⎢⎢⎢⎣
1 Wk−n−K · · · W(k−n−K)(N−1)

1 Wk−n+1−K · · · W(k−n+1−K)(N−1)

...
... · · · ...

1 Wk−n+K · · · W(k−n+K)(N−1)

⎤
⎥⎥⎥⎦ ,

andW k = [Wk−K , . . . , Wk−1, Wk, Wk+1, . . . , Wk+K ]T .
By separating Y k into one part comprising the signal

{sk−K , . . . , sk, . . . , sK} and treating the remaining part as
noise, we can reexpress Y k as

Y k =

K∑
n=−K

F k,nh̃nsn + V k, (13)

where V k is the effective noise which is the sum of the resid-
ual ICI terms and the additive noise such that

V k =

N−1∑
n=0,n/∈[k−K,k+K]

F k,nh̃nsn + W k. (14)

For N suf ciently large and a small number of null subcarri-
ers, i.e., N >> NG1 + NG2 , the effects of null subcarriers
can be ignored. As such, R is approximately diagonalized
with DFT matrix F and IDFT matrix F

H as

R = F diag[S(1), S(W), . . . , S(WN−1)]FH. (15)

If information symbols are independent, have zero mean and
the same variance σ2

s , then the correlation matrix of V k is
found to be

E{V kV
H
k } =

[
cσ2

sR(0)

N
+ σ2

w

]
I2K+1 (16)

−cσ2
s

K∑
n=−K

diag[S(Wn−K), . . . , S(Wn+K)],

where we used the equality R(0) =
∑N−1

n=0 S(Wn)/N . This
shows that the effective noise correlation matrix E{V kV

H
k }

is independent of its subcarrier index k. It is a diagonal matrix
whose diagonal entries have in general different values. Thus,
strictly speaking, the Viterbi-type equalizer with insuf cient
number of taps is not equivalent to the optimal equalizer, even
if V k can be assumed to be Gaussian. However, since the
diagonal entries of E{V kV

H
k } have almost the same value,

the ML equalizer is nearly optimal if V k is Gaussian.
Now, we roughly evaluate the error-rate performance of

the Viterbi-type equalizer. We de ne the estimates of Yk as
Ŷ k = [Ŷk−K , . . . , Ŷk, . . . , ŶK ]T . Its relation with the sym-
bol estimates ŝn is given by

Ŷ k =
K∑

n=−K

F k,nh̃nŝn. (17)

Suppose that there are no more than two errors in 2K + 1
successive symbol estimates and consider an error event such
that ŝk �= sk and ŝk+m = sk+m for m ∈ [−K, K] and for
m �= 0. Then, the error vector ek = Ŷ k − Y k is expressed
as

ek = F k,kh̃k(ŝk − sk) + V k. (18)

From the Central Limit Theorem, forN suf ciently large,V k

can be approximated as a Gaussian vector with zero mean and
correlationΣ := E{V kV

H
k }. Under this approximation, h̃k

and V k become statistically independent.
An error event occurs if a real Gaussian variable z of unit

variance exceeds ||Σ−1/2
F k,kh̃k(ŝk − sk)||/√2. Let δmin

denote the minimum distance between symbols. As a result,
the error probability is bounded by

BER := Q

(
δmin√

2
||Σ−1/2

F k,kh̃k||
)

, (19)

where the Gaussian functionQ(x) = (1/
√

2π)
∫∞

x
e−t2/2dt.

The vectorΣ−1/2
F k,kh̃k in the norm of (19) is Gaussian

with zero mean and its correlation is given by

Σ̃ := diag[σ̃2
−K , . . . , σ̃2

K ], (20)

where

σ̃2
m =

cS(Wm)

cσ2
s

∑N−1
n=0,n/∈[−K,K] S(Wn+m) + σ2

w

. (21)

If the diagonal entries of Σ̃ are non-zero and have different
values, averaging (19) with respect to the random channel
yields [7, Chap. 5]

BER =

K∑
n=−K

αn

2

⎛
⎜⎜⎝1− 1√

1 +
[

δ2
min

4 σ̃2
n

]−1

⎞
⎟⎟⎠ , (22)
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where

αn =
K∏

m=−K,m �=n

σ̃2
m

σ̃2
m − σ̃2

n

. (23)

Eq. (22) is the approximate performance bound when
2K + 1 entries are used for equalization. If we can take into
account all the ICI terms, then Eq. (22) becomes equivalent
to the matched lter bound (MFB) derived in [6], which is the
performance limit.
It follows from the de nitions that the received signal-

to-noise ratio (SNR) is cσ2
s/σ2

w. On careful inspection of
(21), as SNR gets large, σ̃2

m converges to a value as σ̃2
m →

S(Wm)/(σ2
s

∑N−1
n=0,n/∈[−K,K] S(Wn+m)). The implication

is that at high SNR, the average error probability eventually
becomes saturated due to the residual ICI terms. Increasing
K reduces the effect of the residual ICI terms and improves
the average error probability at the expense of an increase in
computational complexity.

4. NUMERICAL EXAMPLES

Based on perfect channel, we test the performance of Viterbi-
type equalizer with K = 1, 2, 3. Each OFDM symbol has
N = 128 subcarriers with 4 successive null subcarriers at the
frequency edges, i.e., NG1 = NG2 = 4. Let Tc be the chip
sampling period, which is set to be equivalent to the trans-
mitted symbol duration. We de ne the normalized Doppler
frequency as f̄D = (v/c)fcTc, where v, c and fc respectively
denote mobile velocity, speed of light and carrier frequency.
We generate 103 Rayleigh channels, having 8 complex zero-
mean Gaussian taps with identical power pro le. Channel
taps are independent of each other and fade according to Jakes
model [8]. The length of the cyclic pre x is Ncp = 16. The
simulation results are averaged over the channels.
For BPSK constellation, Fig. 1 compares the approximate

BER performance with the empirical ones at f̄D = 0.002.
Good agreement between them is evident, which validates
our approximate expression in (22). As the number of taps
increases, the approximate and empirical BERs show an im-
provement in tandem. The approximate BER is much easier
to generate than the empirical BER. Since time-consuming
simulations are not incurred to produce the approximate BER,
the effect of channel statistics on BER is also simpler to eval-
uate. All these make the approximate BER attractive to use.

5. CONCLUSIONS

An approximate expression for BER performance of the ML
equalizer with a limited number of taps for OFDM over dou-
bly selective channels has been developed to assess the equal-
ization performance without time-consuming Monte-Carlo si
mulations. Numerical simulations demonstrated that the ex-
pression approximates the actual BER performance well.
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Fig. 1. Empirical and approximate BERs for f̄D = 0.002
with perfect channel.
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