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ABSTRACT

This paper considers the problem of blind channel shortening in
OFDM systems. Standard OFDM systems use guard interval (GI)
in form of cyclic prefix (CP) and nulltones (NT) redundancy. In this
paper, we are interested in exploiting simultaneously the CP and the
NT to achieve blindly the channel shortening. We start by proving
that the restoration of NT property leads to the desired channel short-
ening. However, the performance of the shortening based only on
the NT is relatively poor. We propose to improve it by using the NT
in conjunction with the CP redundancy. Hence, the GI-based short-
ening criterion is combined with the NT-based criterion via a scalar
weighting coefficient. The latter is optimized to improve Symbol Er-
ror Rate (SER) performance of the receiver. Simulation results are
provided to illustrate the performance of the combined criterion as
compared to the GI-Based (MERRY algorithm) or NT-based criteria.

Index Terms— OFDM, Blind channel shortening, Differential
encoding.

1. INTRODUCTION

The major asset of Orthogonal Frequency Division Multiplexing
is its low equalization complexity as compared to single carrier
systems. For this reason, OFDM is very attractive and is used
in many standard communication systems including the Digital
Video Broadcasting (DVB), Digital Audio Broadcasting (DAB),
Asymmetric Digital Subscriber Line (ADSL), etc. The intersymbol
interference and the intercarrier interference are removed by using
Null Tones redundancy (NT) and the Guard Interval (GI) of length
higher than the channel size. Therefore, the effective flow decreases
if the channel length increases (i.e, when the GI length increases).
To preserve a high effective flow, we must reduce the channel length
by using channel shortening techniques. From the literature, differ-
ent algorithms of blind channel shortening are known: Multicarrier
Equalization by Restoration of Redundancy (MERRY) [1], the sec-
ond order statistics based methods in [2, 3] and the Carrier Nulling
Algorithm (CNA) [4] that has been introduced in an adaptive scheme
for SIMO (Single-Input Multiple-Output) systems. Recently, in [5],
the authors consider a block differential encoded OFDM system
without NT and exploit the knowledge and specific characteristics
of the first emitted symbol for channel shortening. Here, we use
standard OFDM system (both Null tones and Cyclic prefix (CP)
exist) with block differential encoded data. We extend the work of
[4] by proving first that the restoration on the NT property allows
us to achieve the desired channel shortening in SISO (Single-Input
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Fig. 1. System model.

Single-Output) systems 1. We also propose to improve the blind
shortening quality as compared to [1, 4] by properly combining the
GI and NT based criteria. The optimal combination is obtained by
minimizing the amplitude fluctuation of the received active tones.
We use in this paper the following notations: T , H and ∗ stand for
transpose, transconjugate and conjugate respectively. 1a,b, 0a,b and
Ia are the a× b matrix of ones, the a× b zero matrix and the a× a

identity matrix. Ai,j denotes the (i, j)-th entry of matrix A.The
paper is organized as follows. The next section presents the system
model. Section 3 presents blind channel shortening algorithms. Sec-
tion 4 presents some simulation results and section 5 draws some
conclusions.

2. SYSTEMMODEL

In OFDM systems, the transmitted signal s(k) is segmented into
blocks of length N (N is the number of frequency bins):

sn = [s(nN), s(nN + 1), · · · , s(nN + N − 1)]T (1)

where [s(nN + N − Tn), · · · , s(nN + N − 1)] = 0 (2)
Tn and Ta = N−Tn represent respectively the number of nulltones
and the number of active tones. Block differential modulation [4, 6,
7] is used as follows: The Ta subcarriers are divided intom groups

1This result is given for SISO but is obviously true for SIMO systems.
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each containing r subcarriers (Ta = r ×m, r and m are integers).
The i-th group is given by:

s
i
n = [s(nN + r(i− 1)), · · · , s(nN + ir − 1)]T . (3)

The generation of si
n is given by the following recursion:

s
i
n =

j
Ki(n)si

n−1; if n ≥ 1
1r,1; if n = 0

(4)

Ki(n) ∈ K transports the information on the main diagonal where
K is a finite group of r × r unitary and diagonal matrices [4, 6].
If the transmission rate is R bit per symbol, the cardinality of K is
2rR. After block differential encoding, the block sn is transformed
into vector xn by Inverse Fast Fourier Transform (see Fig. 1):

xn = FHsn (5)

where F represents a N × N normalized Fourier matrix. Then, the
GI redundancy (here, we consider cyclic prefix (CP)) is added to xn

to form a vector of length P = N + ν, ν being the size of the GI.
Due to channel and noise effects, the received signal is given by :

y(i) =
LX

l=0

h(l)x(i− l) + b(i) (6)

where h = [h(0), h(1), · · · , h(L)]T represents a finite impulse re-
sponse channel, x(i) is the transmitted symbols and b(i) is the obser-
vation noise. In this work, the channel memory is larger than the GI
(i.e, L > ν) and hence a shortening is needed to reduce the size of
the channel and eliminate the ISI. We assume that h is unknown, the
data s(k) and noise b(k) are uncorrelated, zero mean and wide sense
stationary processes with variance σ2

s and σ2
b respectively. There-

after, the received data is filtered by time domain equalizer (TEQ)
w = [w(0), w(1), · · · , w(q − 1)]T of degree q − 1 (q should not
exceed N − L) to obtain the following equalized data:

z(i) =

q−1X
l=0

w(l)y(i− l). (7)

The combined equalizer-channel impulse response (CIR) is denoted
by c(n) = h(n)∗w(n) (∗ being the convolution operator). The goal
of the channel shortening is to obtain:

c = [01,d, vT
, 01,(L+q−ν−d−1)]

T

where
c = [c(0), c(1), · · · , c(L + q − 1| {z }

Lc

)]T

v = [v(0), v(1), · · · , v(ν)]T

is the target impulse response (TIR) and d is the equalizer delay.
After demodulation (synchronization + removal of the CP and FFT
), the received n-th block OFDM can be written as:

z̃n = ṽ � sn + b̃n (8)

where � denotes the element by element multiplication. ṽ, b̃n are
respectively the TIR and noise in frequency domain. We define the
i-th received group as:

z̃
i
n = ṽ

i � s
i
n + b̃

i
n, ∀i ∈ [0, m− 1] (9)

where:

ṽi = [ṽ(r(i− 1)), · · · , ṽ(ir − 1)]T

b̃i
n =

h
b̃n(r(i− 1)), · · · , b̃n(ir − 1)

iT

.

Using (4) and (9), we obtain the recursive relation between z̃i
n and

z̃i
n−1:

z̃
i
n = K

i(n)z̃i
n−1 + ¯̃

b
i

n (10)

where ¯̃
bi

n = b̃i
n −Ki(n)b̃i

n−1 represents the global noise term in
i-th group. To decode the information symbols, we use the MMSE
estimator as follows:

K̂
i(n) = arg min

K∈K

‚‚‚z̃
i
n −Kz̃

i
n−1

‚‚‚2

(11)

where ‖.‖ denotes the Frobenius norm. We note that the information
can be decoded without the knowledge of the TIR thanks to block
differential encoding. Equation(11) can be solved either by exhaus-
tive search or by using fast lattice decoding algorithm [8].

Next, we recall the basic principle of GI-Based and NT-based
shortening techniques.

3. BLIND SHORTENING ALGORITHMS

3.1. GI-Based shortening (MERRY):

The MERRY algorithm consists in minimizing the square of the dif-
ference between two z values separated by the data block of length
N . This allows to restoring the CP-redundancy. In [1], the authors
propose the following cost function:

Jmerry = E
ˆ
|z(nP + d + ν)− z(nP + d + ν + N)|2

˜
(12)

Jmerry can be written as:

Jmerry = wH
E

h
y̌ny̌

H
n

i
w (13)

where

y̌n =

2
6664

y∗(nP + d + ν) − y∗((n + 1)P + d)
y∗(nP + d + ν − 1) − y∗((n + 1)P + d − 1)

...
y∗(nP + d + ν − q + 1) − y∗((n + 1)P + d − q + 1)

3
7775 .

(14)
Equation (13) is minimized subject to the unit norm constraint, i.e.
‖w‖ = 1, to avoid the trivial solution w = 0. Hence, w is obtained
as the least eigenvector of the quadratic form:

Qmerry =

NbX
n=1

y̌ny̌
H
n (15)

Nb being the number of the OFDM symbols in batch (block) pro-
cessing. In an adaptive scheme, w can be computed using a stochas-
tic gradient algorithm as suggested [1].

3.2. NT-Based shortening (CNA):

We consider here the NT-based criterion used in [4] for channel
shortening:

Jcna =
NX

i=Ta+1

E
ˆ
|z̃n(i)|2

˜
(16)

which consists in the restoration of the ”zero energy” of the null
tones. We start first by proving theoretically that minimizing crite-
rion (16) leads to the desired channel shortening.
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Lemma: Assume that Ta > L + q − ν − 1. Then, in noiseless
case, criterion Jcna satisfies:

Jcna = 0 ⇔ c = [vT
, 01,(Lc−ν)]

T

where v = [c(0), c(1), · · · , c(ν)]T .

Proof: The received signal after filtering by TEQ w and CP
removal can be written as:

z̃n = FC1xn + FC2xn−1 (17)

where C1 and C2 are N ×N matrices defined as:

C1 =

2
66666666666666666666666666666666666666664

c(0) 0 → → → 0 c(ν) · · · c(1)

.

.

. ↘ ↘

.

.

.
.
.
. · · ·

.

.

.
.
.
.

. . . ↘ ↘ 0 c(Lc) · · · c(Lc − ν + 1)

.

.

.
. . . ↘ ↘ 0

. . .
.
.
.

.

.

.
. . . ↘ ↘ ↘ c(Lc)

c(Lc)

. . .
. . . ↘ ↘ 0

0 ↘

. . .
. . . ↘ ↘ ↓

↓ ↘ ↘

. . .
. . . ↘ 0

↓ ↘ ↘

. . .
. . . 0

0 → → 0 c(Lc) · · · · · · · · · c(0)

3
77777777777777777777777777777777777777775

and C2 =

2
6664

0 · · · c(Lc) · · · c(ν + 1)
... ↘

...
0 0 0 → → c(Lc)
0 → → → → 0

3
7775

In the case, where C2 = 0, i.e. c = [vT ,01,(Lc−ν)]
T vector z̃n can

be expressed (in the noiseless case) as:

z̃n =

2
666666664

z̃n(1)
...

z̃n(Ta)
z̃n(Ta + 1)

...
z̃n(N)

3
777777775

=

2
666666664

c̃(1)

...

...

c̃(N)

3
777777775
�

2
666666664

sn(1)
...

sn(Ta)
0
...
0

3
777777775

(18)

where [c̃(1), · · · , c̃(N)] = F

Nz }| {
[c(0), · · · , c(ν), 0, · · · , 0]T . This

proves the first part of the equivalence:

c = [vT
, 01,(Lc−ν)]

T ⇒ Jcna = 0.

Since xn and xn−1 are decorrelated, we have:

Jcna ≥

NX
i=Ta+1

E
ˆ
|FC2xn−1(i)|2

˜

= Trace
n
F2C2F

HE
h
sn−1s

H
n−1

i
FCH

2 FH
2

o

= σ2
sTrace

n
F2C2F

HPFCH
2 FH

2

o

= σ2
sTrace

n
F2C2F

H
1 F1C

H
2 FH

2

o
= σ2

s

‚‚‚F2C2F
H
1

‚‚‚2
(19)

where P =

»
ITa 0
0 0Tn,Tn

–
, F1 and F2 are submatrices of F

defined as:
F =

Ta {
Tn {

»
F1

F2

–
(20)

Using (19), we can rewrite as:

Jcna ≥ σ
2
s

‚‚‚F21TF
H
12

‚‚‚2

(21)

where F12 is a submatrix of F1 given by its last Ta columns vectors
(resp. F21 is a submatrix ofF2 given by its first Ta columns vectors).
T is a Ta × Ta submatrix of C2 defined as:

T =

2
6664

0 · · · c(Lc) · · · c(ν + 1)
... ↘

...
0 0 0 → → c(Lc)
0 → → → → 0

3
7775 .

Consequently, Jcna = 0 only if: F21TFH
12 = 0.

Since F12 is a Ta × Ta full rank (Vandermonde ) matrix, the latter
equality leads to: F21T = 0.
Given the triangular structure of T and the fact that the first column
of F21 is equal to 1Tn,1, we get finally:

c(ν + 1) = c(ν + 2) · · · = c(Lc) = 0.

We conclude that restoration of the null tones is equivalent to channel
shortening at length ν + 1. �

Minimizing (16) under unit norm constant, ‖w‖ = 1, leads to
quadratic optimization problem as shown below:

wopt = arg min
w

E

"
NX

i=Ta+1

|z̃n(i)|2
#
subject to (s.t.) ‖w‖ = 1.

(22)
The equalized received block zn can be written as:

zn = Ynw (23)

where Yn is the received matrix defined by:

Yn =

2
64

y(nP + ν) · · · y(nP + ν − q + 1)
...

. . .
...

y(nP + ν + N − 1) · · · y(nP + ν + N − q)

3
75 .

The received tones z̃n are given by: z̃n = F (Yn.w) = (FYn)w
and hence equation (22) becomes:

wopt = arg min
w

w
H

E
h
YH

n F
H
2 F2Yn

i
w s.t. ‖w‖ = 1. (24)

The desired TEQ wcna is the unit eigenvector corresponding to the
least eigenvalue of the quadratic form:

Qcna =

NbX
n=1

YH
n F

H
2 F2Yn (25)

3.3. Combined technique

We suggest here to combine both the restoration of the NT and the
restoration of the CP properties. The GI-based shortening criterion
in combined with the NT-based criterion via a scalar weighting co-
efficient 0 ≤ ρ ≤ 1, leading to:

Jcom = ρJmerry + (1− ρ)Jcna (26)

Using (13) and (25), Jcom is expressed as:

Jcom = wH
`
ρQmerry + (1− ρ)Qcna

´
w = wH Qcomw. (27)
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Again, we use the constraint ‖w‖ = 1 to avoid the null solution. So
that, the desired TEQwcom is equal to the least eigenvector ofQcom.
Now, our objective is to properly choose the weighting parameter ρ
in such a way we improve the system performance. If the channel on
the target impulse response is known, one can optimize ρ by mini-
mizing the symbol error rate expression given in [9]. In our context,
such information is not available and hence we precede ”blindly” to
choose the weighting parameter ρ. For that, we exploit the fact that
the differential encoder we have considered corresponds to constant
modulus emitted symbols on each active subcarrier. Therefore, we
choose to optimize ρ by minimizing the averaged amplitude fluctu-
ation over Nb OFDM symbols. Indeed, the amplitude fluctuation
of the active tones is mainly due the residual interference noise af-
ter channel shortening. Hence, minimizing this fluctuation would
reduce the residual shortening noise. We define the amplitude fluc-
tuation at i-th subcarrier by:

Fi =
maxn |z̃n(i)|

meann |z̃n(i)|
− 1 (28)

and its average value by: F =
1

Ta

TaX
i=1

Fi (29)

We have used Matlab Optmization Toolbox to minimize F .

4. SIMULATION RESULTS

In this section, a series of simulations is conducted to study and com-
pare the performance of the considered algorithms. We consider a
SISO OFDM system. N = 64 represents the number of subcar-
riers, TN = 7 and ν = 8 are respectively the length of the NT
and CP. A channel of length L = 20, is generated randomly such
that its taps are zero-mean complex Gaussian variables with vari-
ances σ2

l = λ.exp(−0.5l), l = 0 · · ·L − 1 where λ ensure the
unit energy of h. The SNR is defined as: SNR =

σ2
s‖h‖

2

σ2
b

. We
compute the optimal value ρ that minimizes (29). Nb = 50 OFDM
symbols are generated at each run using either a scalar differential
encoder with K ∈ e

jπ
4 , e

−jπ
4 , e

3jπ
4 , e

5jπ
4 a 3− dimensional dif-

ferential block encoder corresponding to the finite group [7]: K =n
Kl|K = diag[e

jπ
4 ; e

jπ
4 ; e

3jπ
4 ], l = 0 · · · 7

o
A TEQ with q = 24

taps is used and the delay parameter is chosen equal to d = 0. For
each SNR, the SER is measured by observing a minimum of 100
symbol errors. Fig.2. illustrates the original channel, the CIR ob-
tained in using the CNA, MERRY and combined methods at SNR
= 25dB. Fig.3. displays the overall SER performance correspond-
ing to an SNR range of [5, 25] dB for scalar differential encoding.
Starting from SNR=10db, the proposed method has a lower SER as
compared to MERRY and CNA methods. Fig.4 represents a simi-
lar results but with a block differential encoder using the group K
defined above. Again, the combined method has a lower SER com-
pared to MERRY and CNA methods especially at high SNR values.

5. CONCLUSION

This paper provides a theoretical proof that the restoration of the null
tones allows us to achieve the desired channel shortening. Then , we
introduce a new shortening method that combines CNA andMERRY
criteria in such a way to minimize the averaged amplitude fluctuation
of the active tones signals. This combined method outperforms the
two previous ones.
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