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ABSTRACT

Many recent works that study the impact of spatial correla-
tion on the performance of multi-input multi-output (MIMO)
systems assume a separable (also known as the Kronecker)
model where the variances of channel entries, upon decom-
position onto the transmit and the receive eigen-bases, admit
a separable form. If the true statistics of the channel coef -
cients are non-separable, the separability assumption leads to
a attening and spreading of the degrees of freedom (DoF)
in the channel, and hence results in misleading estimates of
capacity – an observation consistent with many measurement
campaigns. Towards understanding this observation, we rst
elucidate the importance of channel power normalization, an
often-ignored notion, in the capacity analysis of correlated
channels. Using tools from random matrix theory, we char-
acterize the mismatch in estimating capacity with the separa-
ble model, and thus provide a theoretical underpinning behind
many measurement-based observations.

Index Terms— Capacity, correlation, fading channels,
MIMO systems, model mismatch, multiplexing, random ma-
trix theory.

1. INTRODUCTION

Initial results on multi-input multi-output (MIMO) systems
show that a linear growth in multiplexing gain and coher-
ent capacity is possible with the number of antennas under
the assumption of spatially independent and identically dis-
tributed (i.i.d.) Rayleigh fading between antenna pairs [1, 2].
However, the rich scattering assumption is idealistic and most
physical channels encountered in practice exhibit clustered
scattering and spatially correlated links. Correlated MIMO
channels have been theoretically studied mainly in the con-
texts of the separable correlation model (also known as the
Kronecker model) [3] and the virtual representation frame-
work for uniform linear arrays (ULAs) [4]. The Kronecker
model assumes separability in correlation induced by the
transmitter and the receiver arrays which limits the degrees of
freedom (DoF) in modeling the channel. Though this model
is accurate in certain scattering environments, the separability
assumption limits its applicability to more realistic settings.
The virtual representation does not assume such separability,
but is applicable only for ULAs.
A general canonical modeling framework which accom-

modates non-separable variances for the channel coef cients
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has been introduced in recent works [5, 6, 7]. Here, the chan-
nel is decomposed into a canonical channel matrix via two
statistics-dependent unitary matrices that correspond to the
eigen-modes of the transmit and the receive covariance ma-
trices. The entries of the canonical channel matrix embody
the statistically independent DoF that govern channel capac-
ity and diversity. Experimental evidence [6] shows that in
most realistic channels, the Kronecker model consistently es-
timates true capacity poorly while the canonical model pre-
dicts capacity more accurately. The main focus of this paper
is on understanding the theoretical basis behind this observa-
tion.

Towards this goal, we rst illustrate the importance of
channel power normalization (where channel power is de ned
as ρc = E [Tr(HHH)] with H denoting the channel matrix)
in capacity analysis. The most commonly used normalization
requires ρc to remain equal, irrespective of the environment
or antenna dimensions. We argue that this normalization is
inadequate and unfair for all performance comparisons. Re-
cently reported observations on channel capacity like “A cor-
related channel performs better than an i.i.d. channel at low-
SNR,” critically depend on how the channel power is normal-
ized. We present a new channel power normalization that con-
strains the variances of channel entries to be bounded. With
the proposed normalization, we observe that a richer channel
results in a higher capacity over a more correlated channel at
any SNR.

We then assume that the true statistics of the channel co-
ef cients are non-separable and study the capacity mismatch
with a Kronecker model tted to this channel under the pro-
posed and the standard channel power normalizations. This is
done by computing the means and variances of the capacity
random variable for the two model ts using tools from ran-
dom matrix theory. With the proposed normalization, our re-
sults show that for non-regular1 channels at high- to medium-
SNRs, the Kronecker model underestimates the outage capac-
ity at all reliability levels (and also the reliability at all data
rates). On the other hand, for any channel in the low-SNR

regime, and regular channels in the high- to medium-SNR

regime, the Kronecker model overestimates capacity at high
levels of reliability (and reliability at low data rates) and vice
versa. While experimental/measurement evidence has been
put forth for some of these trends elsewhere [6], our work
provides the rst rigorous and systematic framework to ex-
plain these observations.

1LetH be anNr×Nt random matrix with independent entries and let the
variance ofH[i, j] be given by Pc[i, j]. A channel is called column-regular
if {

�
Nr
i=1

Pc[i, j]} is independent of j, row-regular if the above condition is
true forHT , and regular if it is both row- and column-regular [8]. Otherwise,
it is non-regular.
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2. SYSTEM MODEL

We consider a narrowband, fading MIMO channel with Nt

transmit and Nr receive antennas. The Nt × 1 transmitted
vector x and the Nr × 1 received vector y are related by

y = Hx + n (1)

whereH is theNr×Nt channel matrix and n is the indepen-
dent, white Gaussian noise added at the receiver. It has been
well-documented that the assumption of zero mean Rayleigh
fading is an accurate model for H in a non line-of-sight set-
ting. Thus the complete channel statistics are described by
the second-order moments. Rich scattering environments are
accurately modeled by the commonly used i.i.d. modelwhere
the channel entries are i.i.d. CN (0, 1). However, the i.i.d.
model is not accurate in describing realistic propagation en-
vironments. Various statistical models have been proposed to
overcome the de ciencies associated with the i.i.d. model.
The most general framework of canonical modeling [5,

6, 7] assumes that the auto- and cross-covariance matrices
on both the transmitter and the receiver sides have the same
eigen-bases, and exploits this redundancy to decomposeH as

H = UrHindU
H
t (2)

where Hind has independent, but not necessarily identically
distributed entries. Ur and Ut are eigenvector matrices cor-
responding to the receive and the transmit covariancematrices
which are de ned as Σr = E [HHH ] and Σt = E [HHH],
respectively.
A special case of the above model is the Kronecker

model where Hind is assumed to be Λ
1/2
r HiidΛ

1/2
t with

Λt and Λr diagonal. While the canonical model is charac-
terized by NtNr parameters corresponding to {Pc[i, j] =
E [|Hind[i, j]|2]}, the Kronecker model is parameterized by
fewer parameters: the Nt + Nr diagonal entries of Λt and
Λr. Given a channel Hc with Hc[i, j] ∼ CN (0,Pc[i, j])
where Pc[i, j] are non-separable, a channel Hk whose en-
tries have separable variances can be tted according to the
relationship: Hk[i, j] ∼ CN (0,Pk[i, j]) with

Pk[i, j] =

∑
k Pc[i, k] ·∑l Pc[l, j]∑

kl Pc[k, l]
. (3)

Note that the mapping in (3) may considerably increase the
DoF in the Kronecker representation of a scattering envi-
ronment described by (2). In general, the Kronecker model
spreads the degrees of freedom across the resulting Pk and
thereby ‘ attens’ it since its statistics are based only on col-
umn and row sum statistics of the true spatial power matrix.
We assume that the receiver can estimate H (perfectly)

at essentially zero cost. Under the assumption that the true
statistics of the channel coef cients are non-separable and the
channel statistics do not change over a suf ciently long dura-
tion, long-term averages of the sample covariance matrix and
the squared magnitude of the channel entries lead to reliable
estimates for the eigen-matrices and the variances of channel
entries at the receiver. Since the eigen-directions carry more
information than the variances, we assume that these are fed
back perfectly. To minimize the cost of statistical feedback
overhead, the receiver may convey only a subset of the infor-
mation in the variances to the transmitter. As described above,

a simple method to reduce the number of variance parameters
is to t a Kronecker model to a canonical channel as in (3). In
this work, we assume that the independent parameters in Pk

are fed back to the transmitter perfectly.
In the above setting, the ergodic (or average) capacity of

a MIMO channel at a transmit SNR of ρ is given by [2]

Cerg(ρ) = sup
Q : Q≥0, Tr(Q)≤ρ

EH

[
log det

(
I + HQHH

)]
where the optimization is over the set of trace-constrained,
positive semi-de nite matrices. It is known that [7, 9] the op-
timalQ reduces to beamforming along the statistically domi-
nant eigen-mode in the low-SNR extreme and uniform power
signaling in the high-SNR extreme. Thus, we have

Clow(ρ) = E

[
log2

(
1 + ρ

∑
i

∣∣Hind[i, jmax]
∣∣2)]

(4)

= log2(e) · ρ ·
∑

i

Pc[i, jmax] · (1 + o(1)) (5)

Chigh(ρ) = E

[
log2 det

(
INr

+
ρ

rank(Σt)
HindH

H
ind

)]
where jmax = arg maxj

∑
i Pc[i, j]. Since ergodic capac-

ity is insuf cient to completely characterize performance, the
more reasonable notion of outage capacity at an outage prob-
ability of q% is necessary. Following a Gaussian approxima-
tion for the capacity random variable, this is given by

Cout, q(ρ) = Cerg(ρ)− xq

√
V (ρ) + o(1) (6)

where xq is the unique solution to erfc(xq/
√

2) = 2q with
V (ρ) and erfc(·) denoting the variance of the capacity random
variable and the complementary error function, respectively.
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Fig. 1. Impact of the richness of scattering environments on
the ergodic capacity under the standard channel power nor-
malization. More correlated channels show a larger capacity
in the low-SNR extreme with a cross-over SNR from which
onwards the more richer channel shows higher capacity.

3. CHANNEL POWER NORMALIZATION

The standard channel power normalization used in the MIMO
literature is ρc = NtNr, a legacy of the i.i.d. model so that
the total channel power is identical irrespective of the envi-
ronment. Under the above normalization, Fig. 1 illustrates
the impact of progressively rich scattering on capacity when
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statistical information is available at the transmitter for the
following channels:

Pc,1 =
4

2.5
×

[
1 0
1 0.5

]
,Pc,2 =

4

3.3
×

[
1 0.8
1 0.5

]
,

andPc,3, the 2× 2 i.i.d. channel. We see that in a highly cor-
related channel, the received power in the dominant column
is higher than that of an i.i.d. channel where isotropic trans-
mission is optimal. Hence, correlated channels have higher
capacity than i.i.d. channels below some critical SNR value,
as observed in many recent works [10, 9]. This suggests that
the above normalization has to be examined more carefully.
We now propose an alternate normalization where we

compare different environments by assuming equal fading
gain per DoF in all cases. That is, Pc[i, j] ≤ 1 holds for all
i, j, irrespective of the number of antennas or the scattering
environment. The i.i.d. channel can be obtained by setting
Pc[i, j] = 1 for all i, j while a correlated/sparse scattering is
obtained by settingPc[i, j] to zero (or close to zero) for some
indices of {i, j}. The more the indices that are set to zero, the
more correlated/sparse the scattering environment is.
Fig. 2 illustrates the capacity of the above three channels

with the proposed channel power normalization. Note that
the slope of the capacity curves corresponding to the three
channels are the same at high-SNR since the spatial multi-
plexing gain is the same for these channels (rank(Pc,i) = 2).
Since a richer scattering environment projects more power
to the receiver than a sparser scattering environment, it is to
be expected that the i.i.d. channel has the highest capacity
among all channels, irrespective of the SNR. In fact, in [5]
we claim that as a function of the statistics, Cerg(ρ) is maxi-
mized under the proposed normalization whenH is i.i.d., that
is, Pc[i, j] = 1 for all i, j.
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Fig. 2. Impact of the richness of scattering environments on
the ergodic capacity with the proposed channel power nor-
malization. Under this normalization, the richer channel al-
ways leads to larger capacity for any SNR.

4. KRONECKER VS. CANONICAL MODELS

Our focus in this section is on comparing the capacities (un-
der the two normalizations) when the true statistics follow the
canonical model (This channel is denoted by Hc.) while we
t a Kronecker model for this channel according to (3) (This
channel is denoted byHk.). While this study for an arbitrary
choice of transmit SNR and Nt, Nr seems dif cult, we can

obtain fundamental insights by studying this problem at the
low- and the high-SNR extremes in the antenna asymptotic
limit. We expect these conclusions to be meaningful for rea-
sonably large antenna dimensions. The main conclusions2 are
as follows.

Theorem 1 In the low-SNR extreme, for the case of regular
channels, the ergodic capacity under both models is the same
for either normalization. In particular, the dominant terms
satisfy:

Cerg,c,1(ρ) = Cerg,k,1(ρ) =
log2(e)ρNtNr

ρc
·
∑

i

Pc[i, jmax],

Cerg,c,2(ρ) = Cerg,k,2(ρ) = log2(e)ρ ·
∑

i

Pc[i, jmax]

with equality under the two normalizations if and only if
Hc = Hk ↔ Hiid. Furthermore, the variances satisfy:(

log2(e)ρNtNr

ρc

)2

·
∑

i

(
Pc[i, jmax]

)2
= Vc,1(ρ) ≥

Vk,1(ρ) =

(
log2(e)ρNtNr

ρc

)2

·
∑

i

(
Pk[i, jmax]

)2
,

(log2(e)ρ)
2 ·

∑
i

(
Pc[i, jmax]

)2
= Vc,2(ρ) ≥

Vk,2(ρ) = (log2(e)ρ)
2 ·

∑
i

(
Pk[i, jmax]

)2

with equality in either case if and only if H is i.i.d. Also,
the standard normalization always results in higher variance
with equality if and only ifH is i.i.d.
The same expressions continue to hold for non-regular

channels, and it can be observed that Vc,i(ρ) > Vk,i(ρ) un-
der either normalization; Vc,1(ρ) > Vc,2(ρ); and Vk,1(ρ) >
Vk,2(ρ).

From the above theorem, it is to be noted that the er-
godic capacities remain the same under the canonical and
the Kronecker models for either normalization, irrespective
of whether the channel is regular or non-regular. Thus, the
dominant factors in understanding outage capacity in (6) are
the variances of capacity. And, except for the i.i.d. channel,
the outage capacity under the canonical model is less steeper
than the outage capacity under the Kronecker model.
To understand the high-SNR regime, we need to make

two assumptions on the random matrix channelHc to aid in
capacity analysis: 1) Nt = Nr = N , and 2) rank(Hc) =
N a.s. Note that the second condition is equivalent to the as-
sumption that none of the transmit or the receive eigenvalues
({∑i Pc[i, j]} or {

∑
j Pc[i, j]}, respectively) are zero. Also,

note that since Pk[i, j] are determined by the sum statistics
ofPc[i, j], the non-redundancy assumption above means that
Pk[i, j] > 0 for all i, j. Then, it follows that rank(Hk) =
N a.s.. In this setting, the capacity random variables under
the two models (and normalization i) are given by

Cc,i(ρ,H) = log2 det
(
HcH

H
c

)
+ κi

Ck,i(ρ,H) = log2 det
(
HkH

H
k

)
+ κi (7)

where κi is a constant independent of the statistics (but de-
pendent on the normalization) up to anO( 1

ρ ) term. Hence the

2See [5] for proofs.
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statistics of Cc,i(ρ,H) and Ck,i(ρ,H) at high-SNR are re-
lated to the moments of log det

(
HcH

H
c

)
and log det

(
HkH

H
k

)
,

respectively. Towards studying the statistics of these log de-
terminants, we need the following result.

Lemma 1 Let Hc[i, j] be independent and distributed as
CN (0,Pc[i, j]). Then, there exist independent random vari-
ables Z̃i, i = 1 · · ·N on some probability space such that
Z̃i ∼ i

�
N
j=1

|Hc[i,j]|
2

N and det
(
HcH

H
c

)
can be well approxi-

mated by
∏N

i=1 Z̃i.

Using the above lemma, we have the following main result.

Theorem 2 In the high-SNR extreme and the asymptotics of
N , for the case of regular channels, we have Cerg,c,i(ρ) =
Cerg,k,i(ρ) for either normalization. Furthermore,

Cerg,c,1(ρ) ≥ Cerg,c,2(ρ), Cerg,k,1(ρ) ≥ Cerg,k,2(ρ)

with equality in either case if and only if H is i.i.d. In the
non-regular case, Cerg,c,i(ρ) > Cerg,k,i(ρ).
Further, for both regular as well as non-regular channels,

Vc,i(ρ) and Vk,i(ρ) are independent of the normalization.

While Lemma 1 results in closed-form expressions for
means of capacity [5], the same for the variances seems
dif cult. However, numerical studies suggest that for most
scattering environments (Vc,i(ρ))

1

2 and (Vk,i(ρ))
1

2 are sub-
dominant when compared with Cerg,c,i(ρ) and Cerg,k,i(ρ),
respectively. Thus the outage capacities with the two models
are primarily determined by Cerg,c,i(ρ) and Cerg,k,i(ρ) for
most generic (non-regular) scattering environments. More
importantly, the smoothing effect of the Kronecker model as
can be seen from (3), and the low-SNR trends of V•(ρ) lend
credence to the conjecture that Vc,i(ρ) ≥ Vk,i(ρ), even in the
medium- to high-SNR regime. In the ensuing discussion, we
will assume these two observations without proof.
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5. DISCUSSION

We now assume the proposed channel power normalization.
In the case of non-regular channels, the fact that Cerg, c(ρ) >
Cerg, k(ρ) (Theorem 2) and the sub-dominance assumption of
V•(ρ) implies that the Kronecker model underestimates ca-
pacity con rming the observations made in recent measure-
ment campaigns [6]. This result is also illustrated in Fig. 3

where the cumulative distribution functions (CDFs) of capac-
ity (with a sparse scattering environment) for each model at
−10 dB, 10 dB and 30 dB SNR are plotted. Note that the
Kronecker model CDF curves are steeper, indicating smaller
variance than that predicted by the canonical model. Also,
note that low outage probability corresponds to high levels
of operational reliability and hence the Kronecker model also
underestimates reliability for all data rates.
For any channel in the low-SNR regime (as well as regu-

lar channels in the high-SNR regime), Cerg, c(ρ) = Cerg, k(ρ)
and the precise outage-reliability characterization is deter-
mined by Vc(ρ) and Vk(ρ). Using Vc(ρ) ≥ Vk(ρ), we see
that at high levels of operational reliability, the Kronecker
model overestimates capacity while it switches roles and un-
derestimates capacity at low levels of reliability. Rephrasing
this observation, the Kronecker model overestimates relia-
bility at low data rates and it underestimates reliability at
high rates. However, these trends are not that prominent in
Fig. 3 due to the smallness of capacity values at low-SNRs.
Furthermore, as the scattering becomes more richer (and the
channel more close to being regular), the gap in the ergodic
capacities between the two models becomes smaller. Thus,
our analysis provides a theoretical foundation for many recent
measurement-based observations.
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