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ABSTRACT
In a multi-sensor target tracking application running on a

shared network, at what bit-rates should the sensors send

their measurements to the tracking fusion center? Clearly,

the sensors cannot use arbitrary rates in a shared network,

and a standard network rate control algorithm may not pro-

vide rates amenable to effective target tracking. For Kalman

Filter-based multi-sensor target tracking, we derive a util-

ity function that captures the tracking Quality of Service as

a function of bit-rate. We incorporate this utility function

into a network rate resource allocation framework, deriving

a distributed rate control algorithm for a shared network that

does not require network re-design. In simulation studies, the

new rate-control algorithm engenders much better tracking

performance than a standard rate-control method.

Index Terms— Target Tracking, Kalman filter

1. INTRODUCTION
Consider a multi-sensor target tracking scenario where a tar-

get is tracked by several sensors which send measurements

to a fusion center through a shared network. With these mea-

surements, the fusion center estimates the track using Kalman

filter based target tracking. In a shared network, what is the

optimal set of sensor transmission rates that yields the best

target tracking performance? We address this problem in this

paper. Standard rate control methods (e.g., TCP protocols)

do not consider the QoS (Quality-of-Service) requirements of

the multi-sensor target tracking application.

We take the following approach: Starting with the well

known Kalman filter-based target tracking equations, in Sec-

tion 3 we derive utility functions for both state vector fusion

(SVF) and measurement fusion (MF) methods so that the tar-

get position estimation error is minimized. In Section 4, this

utility function is used to augment the utility employed in

the standard network utility maximization (NUM) approach

[1, 2]. We present a distributed rate control protocol to solve

this augmented NUM problem using the gradient projection

algorithm. The strength of our method is that it can be de-

ployed in existing networks without the need for any redesign.

This material is based upon work supported by the US National Sci-

ence Foundation (NSF) under Grants CNS-0519933, CCF-0347229 and IIS-

0325260 (ITR Medium).

Section 5, presents simulation results that demonstrate the im-

proved track estimation accuracy of the proposed protocol.

Section 6 concludes the paper. First, we review the basic no-

tions of Kalman filter based multi-sensor target tracking.

2. KALMAN FILTER BASED TARGET TRACKING
Suppose the position, velocity, and acceleration of a tar-

get along the (x, y) coordinates and at time instant k are

(x(k), y(k)), (vx(k), vy(k)), and (ax(k), ay(k)), respec-

tively. Kalman filter based target tracking utilizes the follow-

ing plant and measurement equations [3]:
X(k + 1) = Φ X(k) + Γ W (k);

Z(k) =
[
1 0 0 0
0 0 1 0

]
X(k) + V (k), (1)

where X(k) = [x(k), vx(k), y(k), vy(k)]T is the state vec-

tor; plant and measurement noise covariance matrices are

Q(k) = diag{q, q} and R(k) = diag {r, r}, respectively;

Φ=

⎡
⎢⎢⎣

1 Δ 0 0
0 1 0 0
0 0 1 Δ
0 0 0 1

⎤
⎥⎥⎦; Γ=

⎡
⎢⎢⎣

Δ2

2 0
Δ 0
0 Δ2

2
0 Δ

⎤
⎥⎥⎦; W (k)=

[
ax(k)
ay(k)

]
;

and Δ is the period of update.

Let N denote the number of sensors, and let the subscript i
identify quantities corresponding to sensor i. For multi-sensor

target tracking with SVF and basic convex combination [4, 5],

the final estimate and error covariance matrix are

X̂(k|k) = P (k|k)
i=N∑
i=1

Pi(k|k)−1X̂i(k|k);

P (k|k) =

[
i=N∑
i=1

Pi(k|k)−1

]−1

. (2)

MF [4] uses the fused measurement vector and its error co-
variance matrix as

Z(k) =

[
i=N∑
i=1

Ri(k)−1

]−1 i=N∑
i=1

Ri(k)−1Zk(k);

R(k) =

[
i=N∑
i=1

Ri(k)−1

]−1

. (3)
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3. UTILITY OF TARGET TRACKING
In Kalman filter based estimation, one typically minimizes the

trace of the error covariance matrix in order to maximize esti-

mation accuracy. Due to its simplicity of analysis and to place

more emphasize on location estimates, the components in the

trace that correspond to the location estimates are selected to

represent the utility S(k), i.e.,

S(k) = −P (k + 1|k + 1)1,1 − P (k + 1|k + 1)3,3. (4)

We may maximize the QoS of the multi-sensor target tracking

application by maximizing this utility S(k).
To derive expressions for S(k), we need

Definition 1 A 4 × 4 matrix P that takes the form P =[
Φ ∅
∅ Φ

]
, where Φ is a 2 × 2 symmetric matrix, is said to

have a Φ-block diagonal form.

3.1. State Vector Fusion (SVF) Method
Suppose the initial error covariance matrix Pi(0|0) for sen-

sor i is Φi(0)-block diagonal with arbitrary Φi(0).

Claim 1 With SVF, the following are true:
(i) The error covariance matrix Pi(k|k) is Φi(k)-block

diagonal with Φi(k) =
[
p1i(k) p2i(k)
p2i(k) p3i(k)

]
.

(ii) The final error covariance matrix P (k|k) is Φ(k)-

block diagonal with Φ(k) =
[
p1(k) p2(k)
p2(k) p3(k)

]
.

(iii) The Utility can be expressed as

SSV F (k) =
−2 ρ1(k)

ρ1(k) r′ + ρ1(k) ρ3(k) − ρ2(k)2
.

Furthermore, ρ1(k) ρ3(k) − ρ2(k)2 > 0, ∀k > 0, if
Pi(0|0) = I, ∀i.

Proof. By induction. Suppose the claim is true for k.

(i) Use Kalman update equations to show that Pi(k+1|k+
1) is Φi(k + 1)-block diagonal with

p1i(k + 1) =
ai(k) ri

ai(k) + ri
; p2i(k + 1) =

bi(k) ri

ai(k) + ri
;

p3i(k + 1) =
−bi(k)2 + ai(k) ci(k) + ci(k) ri

ai(k) + ri
.

Here, ai(k) = p1i(k) + 2 p2i(k)Δ + p3i(k)Δ2 + (q/4) Δ4;
bi(k) = p2i(k)+p3i(k)Δ+(q/2)Δ3; and ci(k) = p3i(k)+
q Δ2.

(ii) Use (i) in (2) to show that P (k +1|k +1) is Φ(k +1)-
block diagonal with

p1(k + 1) =
ρ1(k)

ρ1(k) ρ3(k) + ρ1(k) r′ − ρ2(k)2
;

p2(k + 1) =
ρ2(k)

ρ1(k) ρ3(k) + ρ1(k) r′ − ρ2(k)2
;

p3(k + 1) =
ρ3(k) + r′

ρ1(k) ρ3(k) + ρ1(k) r′ − ρ2(k)2
.

Here, r′ =
∑i=N

i=1
1
ri

; ρ1(k) =
∑i=N

i=1
ai(k)
δi(k) ; ρ2(k) =∑i=N

i=1
bi(k)
δi(k) ; and ρ3(k) =

∑i=N
i=1

ci(k)
δi(k) , with δi(k) ≡

ai(k) ci(k) − bi(k)2.

(iii) This follows from (4). QED

3.2. Measurement Fusion (MF) Method
Suppose the initial error covariance matrix P (0|0) is Φ(0)-
block diagonal with arbitrary Φ(0).

Claim 2 With MF, the following are true:
(i) The error covariance matrix P (k|k) is Φ(k)-block di-

agonal.
(ii) The Utility can be expressed as

SMF (k) =
−2a(k)

a(k)
∑i=N

i=1
1
ri

+ 1
.

Proof. By induction. Suppose the claim is true for k.

(i) Use Kalman update equations to show that P (k+1|k+
1) is Φ(k + 1)-block diagonal with

p1(k + 1) =
a(k)

a(k)
∑i=N

i=1
1
ri

+ 1
;

p2(k + 1) =
b(k)

a(k)
∑i=N

i=1
1
ri

+ 1
;

p3(k + 1) =
c(k) + [a(k) c(k) − b(k)2]

∑i=N
i=1

1
ri

a
∑i=N

i=1
1
ri

+ 1
.

Here, a = p1(k)+2 p2(k) Δ+p3(k)Δ2+ q
4Δ4; b = p2(k)+

p3(k)Δ + q
2Δ3; and c = p3(k) + q Δ2.

(ii) This follows from (4). QED

3.3. Properties of S(k)
Claim 3 The Utility S(k) (for both SVF and MF) are con-
cave with respect to x (the vector of all the source rates) if the
measurement error covariance of sensor i is ri = r + d/xi.
Here, xi is the transmission rate of sensor i, r is the actual
error covariance of the sensors, and d is a constant.

Proof. Note that S(k) = −2rj/[1 + Aj(k)rj ], ∀j, where

Aj(k) =

{
ρ1(k) ρ3(k)−ρ2(k)2

ρ1(k) +
∑i=N

i=1
1
ri

− 1
rj

, for SVF;
1

a(k) +
∑i=N

i=1
1
ri

− 1
rj

, for MF.

The claim follows because ρ1(k) ρ3(k) − ρ2(k)2 > 0. QED

The inclusion of the term d/xi in ri is motivated by sev-

eral issues: as xi → ∞, we need ri → r; as xi → 0, we need

ri → ∞; and ri should be a decreasing function of xi. So,

this term captures the reality of the non-availability of infi-

nite bandwidth. Alternate terms that satisfy all these features

(e.g., the rate distortion function of a Gaussian random vari-

able) are of course available; however, one may not be able to

guarantee concavity of S(k).
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With N sensors and
∑N

i=1 xi ≤ C, where C is a con-

stant, let us examine where S(k) achieves its maximum:

equal transmission rates if each sensor has the same r value;

if not, then sensors with lower r values get higher transmis-

sion rates; if there are sensors with r = 0, then only those

sensors get non-zero transmission rates; sensors with infinite

r get zero transmission rates.

4. RATE ALLOCATION IN TARGET TRACKING
The challenge one encounters in reality is how to find the

optimal set of transmission rates that maximizes the Util-
ity S(k). The rate allocation problem, expressed within the

NUM framework, is

max
x≥0

∑
j∈T

Uj(x) subject to
∑
j∈T

Rj�xj ≤ C�, ∀� ∈ L, (5)

where each source j measures its utility using a concave func-

tion Uj(x). The set L indexes all the links in the network,

the term Rj� = 1 if the flow of source j utilizes link �, and

Rj� = 0 otherwise. This framework leads to a convex opti-

mization problem that possesses a unique global maximum.

To include QoS requirements of the multi-sensor target track-

ing application into the NUM framework, we augment the

ordinary utility function with an additive term.

There are basically two types of users on the network:

(1) target tracking users who are running the target tracking

application; and (2) ordinary users who are running ordinary

data transfer applications. Now consider the following new

utility function that all network users use:

Uj(x) = Vj(xj) + KS(k), ∀j ∈ T, (6)

The first term Vj(xj) is a concave function of the source

data rate xj and it addresses rate maximization, and is from

the standard (original) utility function. The second term

addresses the target tracking QoS requirements since S(k)
is the quantity we should maximize to maximize the target

tracking QoS (see Section 3). Claim 3 establishes concavity

of S(k). The real parameter K > 0 determines the empha-

sis placed upon target tracking QoS over the standard utility

maximization. Choosing K = 0 for ordinary users, their util-

ity function reduces to the original rate maximization utility

function.

To solve (5), we take the primal-dual approach [2], and

consider the Lagrangian

L(x,p) =
∑
j∈T

(
Uj(x) − xj

∑
�∈L

Rj�p�

)
+

∑
�∈L

C�p�. (7)

Here, p is a column vector of Lagrange multipliers. The sum∑
�∈L Rj�p� is the sum of all the prices that source j incurs

by using its particular links in the network. Now the original

constrained optimization problem has been converted into a

Lagrangian dual problem. To proceed, we need to specify

V (xj) within Uj(x). We let V (xj) = α log (xj), which is

the utility function of TCP Vegas [2]. Note that we can use

the utility functions of any other rate control TCP variants, as

long as the chosen function is concave. One may show that

∂L(x,p)
∂xj

=
α

xj
−qj +IjNK

∂S(k)
∂xj

=
α

xj
−qj +Fj(x), (8)

where Im = 1 if source m is a target tracking source and 0
otherwise;∑

�∈L

Rj�p� = qj ; rj = r + d/xj ; ∂rj/∂xj = −d/x2
jR;

Fj(x) = −2IjNK
∂rj/∂xj

(1 + Aj(k)rj)2
. (9)

For ordinary sources, this reduces to α/xj − qj . Here, Fj(x)
is the scalar feedback information sent by the sink node to the

source j. Note that, Fj(x) = 0 whenever Kj = 0.

Using the gradient projection algorithm, which enables

one to achieve the optimum in an iterative manner by up-

dating the transmission rates of individual sources in a dis-

tributed manner, and (8), we can get the rate update func-

tion. We proceed by noting that xj(t) = wj(t)/RTTj(t),
where wj(t) and RTTj(t) are the current window size and

Round-Trip Time (RTT) corresponding to source j, respec-

tively. However, RTTj(t + 1) is not available at the time of

window update. Hence, for implementation purposes, we use

the approximation RTTj(t + 1) ≈ RTTj(t). Then we can

derive the window update function

wj(t + 1) = [wj(t) + sRTTj(t) (α RTTj(t)/wj(t)

−qj(t) + Fj(x(t)))]+ , (10)

where s is a constant. The queuing delay qj(t) is estimated

at the source as the difference between the current RTT and

the minimum observed RTT [2, 6]. An ordinary source up-

dates its rate using its current rate, and the current queueing

delay measurement, i.e., TCP Vegas. A target tracking source

updates its rate using its current rate, the queueing delay feed-

back, and the feedback Fj(x(t)) from the sink node.

5. SIMULATION
In a 4000 × 4000ft2 test area, 16 sensors track a target that

moves in a pre-determined path. All sensors measure the

(x, y) target location. Each sensor measurement error is mod-

eled via a zero mean white noise source with covariance γ2 ∝
D2; here D is the distance between the sensor and the target.

All 16 sensors send their readings to the common sink node

through a shared network. The frequency at which the sen-

sors send readings are limited by the allocated bandwidth of

the sensor. The sink node uses MF as discussed earlier for

track estimation. The topology of the simulated network is

given in Fig. 1. Twelve Flows go via 5 intermediate routers

while other four go via 4 intermediate routers. Moreover, all
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Fig. 1. Network topology for target tracking application.

16 flows go via a common link. Each link is congested with

regular TCP Vegas traffic. The ‘cloud’ next to each router

identifies the exact number of incoming and outgoing regular

TCP Vegas traffic at that router. Regular Vegas flows start and

stop transmission randomly. All simulations use ns-2.

Two scenarios were considered: (1) TCP Vegas: All

flows run the ordinary data transfer protocol TCP Vegas; and

(2) Proposed protocol: The coordinated flows (others use

TCP Vegas) run the new protocol with K = 300 and s = 25.

A representative section of the target’s track, together

with the reconstructed tracks, for the two scenarios appear

in Fig. 2. Notice the better performance provided by the

600 700 800 900 1000 1100 1200 1300

600
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1000

1100
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1300

Actual Path
Using the Proposed Protocol
Using Vegas

Fig. 2. Actual and reconstructed tracks of the target.

proposed protocol.

The next experiment is a target catching experiment.

Here, the sink periodically sends the estimates of the target’s

position and velocity to a mobile agent which is attempting to

catch the target. When the mobile agent gets a new estimate,

it calculates its new direction. The agent starts its pursuit at

time 300s from the (2000, 1600) location. The tracks of the

agent appear in Fig. 3. The target is considered to be ‘caught’

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900
1300

1400

1500
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1700

1800

1900

2000

2100

2200

Actual Track
Using Vegas
Using the Proposed Protocol
Catch

Fig. 3. Tracks of the mobile agent.

when the mobile reaches it within 5ft. It is clear from the

results that the agent catches the target with the new protocol

with shorter time (49.3s) than TCP Vegas (118.7s).

6. CONCLUDING REMARKS
In this paper, we have examined the problem of rate control of

multi-sensor target tracking algorithms operating over a net-

work shared by other applications. This work has attempted

to bridge the gap between target tracking QoS objectives and

the network rate allocation. The standard utility function is

augmented with the target tracking Utility. This target track-

ing Utility is derived in order to maximize the estimation ac-

curacy. A distributed rate control algorithm is derived by

solving a convex optimization problem. As we have seen,

this new rate control algorithm provided better target tracking

performance than a more conventional rate control algorithm.
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