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ABSTRACT

This paper addresses the problem of lifetime maximization under un-
equal and time-varying channel conditions, individual battery con-
straints, and estimation quality requirements at the fusion center.
The standard tool for solving this problem (dynamic programming)
has exponential complexity with number of sensors and states and
needs heavy information exchange with sensors at each iteration.
Also errors are introduced via coarse quantization of the parameters,
which is forced by complexity concerns. In light of these issues, we
propose a pragmatic method via a decomposition: The overall SNR
requirement a is “divided” among sensors according to their battery
powers and radio link statistics, and then individual sensors transmit
powers are carefully controlled to maximize the lifetime. The pro-
posed decomposition drastically reduces the computational require-
ment, and also allows a semi-distributed control of sensor transmit
powers. Simulations verify the viability of this method.

Index Terms— Sensor networks, lifetime maximization, KKT
conditions.

1. INTRODUCTION

This paper addresses the problem of the lifetime of sensor networks,
under individual battery constraints, individual time-varying channel
conditions, and subject to an overall estimation quality constraint
(SNR) at the fusion center. The objective is to produce a prag-
matic solution that addresses these general conditions while avoid-
ing the computational complexity, global channel state information
(CSI) requirements, as well as the quantization issues, that have been
pointed out by the past works.

To put this work in perspective, we give a brief outline of the
most relevant past work. There has been a significant amount of
work in this area, but due to the limited space we can only men-
tion a small subset that we use for comparison or for motivating
this paper. We start by mentioning the work of Cui et al. [1] which
considers a static network and finds an optimal water-filling solu-
tion that minimizes the total energy expenditure of the network. In
this solution, the sensors with the worst channel conditions may not
transmit, while others transmit with powers corresponding to their
channel conditions. This general principle is also known as mini-
mum total energy (MTE). In this approach, it is assumed that there
is a common pool of energy from which all sensors are fed, thus
it is impossible for an individual sensor to run out of power before
others. This approach leads to simplified analysis, but is somewhat
unrealistic, since in practice each sensor has an individual battery.

A more general problem formulation includes individual batter-
ies, as well as channel conditions that vary across sensors and over
time. The key issue in this situation is that decisions about individual
transmit powers must be taken while the nodes have no knowledge

of their future transmissions, therefore any optimization will have a
stochastic nature. A natural tool for stochastic optimization is dy-
namic programming, which has been employed in the work of Chen
et al [2]. But in order to formulate a pragmatic dynamic program-
ming approach, channel gains and battery powers must be heavily
quantized, which introduces errors. Since channel gains and battery
powers form part of the state vector, the complexity of dynamic pro-
gramming is exponentially related to this quantization, as well as the
number of sensors, which can be expressed as O(MEQM ), where
Q is the number of quantized channel levels, M is the number of
sensors, and E is the number of possible values for the residual en-
ergy of a sensor. That means for a network consisting of 20 sensors,
with 10 possible energy levels and 5 quantized channel levels, the
computation complexity is on the order of 1027 cycles per transmis-
sion interval.

Thus one is motivated to find a more pragmatic solution. We
present one such solution that involves two steps. First we deter-
mine the portion of the total SNR needed from each sensor, in order
to meet the overall SNR constraint. Once the SNR allotment for
each sensor is determined, we find the optimal power scheduling to
maximize the lifetime. This results in a decomposition of the overall
problem into M (simpler) convex optimization problems. A numeri-
cal algorithm is proposed to determine the local SNR for each sensor.

A main advantage of this pragmatic approach, in addition to re-
duced computation, is that it allows each sensor to operate semi-
independently: unlike the dynamic programming approach, in our
method the control of transmit power of each sensor does not require
knowledge of other sensors’ instantaneous channel conditions (only
requires statistics), thus it is more suitable.for field applications.

In the following, we present the system model, formulate the op-
timization problem, and present numerical simulations. The results
are compared with equal-power and minimum total energy solutions.
Please note that no dynamic programming simulations are presented,
since a dynamic programming solution even with a modest number
of sensors, with reasonable quantization of energy levels and chan-
nel gains, is beyond the computational capacities of most existing
computers.

2. NETWORK MODEL

We consider a network of M sensors with orthogonal channels be-
tween the sensors and the fusion center. . Let xi = θ + ni be the
observation at i-th sensor, where θ is the source signal and ni is the
additive complex Gaussian observation noise ni ∼ CN (0, σ2

i ). Af-
ter the observation is made, our sensor sends this observation to the
fusion center. Let hi denote the i-th channel coefficient between the
sensor and the fusion center. We assume that |hi| has a Rayleigh
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Fig. 2. Network decomposition for the lifetime problem.

distribution.

f(|hi|) =
|hi|e

−|hi|2
2σ2

hi

σ2
hi

(1)

where σ2
hi is known to us. So the received signal at the destination

from the i-th sensor is:

yi = hiwi(θ + ni) + nid

where wi is the transmission gain for the i-th sensor which is related
to transmit power by pi = w2

i (1 + σ2
i ) and nid ∼ CN (0, σ2

id) is
the destination noise. We also assume thatE[θ2] = 1, where E[•] is
the expected value operator. The SNR at destination due to the i-th
channel is:

pi|hi|2
σ2

i pi|hi|2 + (1 + σ2
i )σ2

id

(2)

The total SNR at the fusion center due to all the sensors is:

M∑
i=1

pi|hi|2
σ2

i pi|hi|2 + (1 + σ2
i )σ2

id

(3)

Our goal is to maximize the lifetime of our network while keeping
the expected value of the SNR greater or equal than a target value γ.

3. PROBLEM FORMULATION

Suppose we measure the channel conditions every T seconds. We
assume that N is the number of transmissions before the network
runs out of energy. So network lifetime is NT seconds. For simplic-
ity we set T = 1. So we can write the problem as :

max N (4)

s.t. E

[
M∑

i=1

pij |hij |2
σ2

i pij |hij |2 + (1 + σ2
i )σ2

id

]
≥ γ j = 1, . . . , N

pij ≥ 0 ∀i, j

where |hij | is the channel coefficient for the i-th channel during the
j-th transmission period and pij is the corresponding transmission
power. We now approximate the SNR constraint by twice using the
weak law of large numbers [3].

N∑
j=1

M∑
i=1

pij |hij |2
σ2

i pij |hij |2 + (1 + σ2
i )σ2

id

≥ γN

M∑
i=1

NE

[
pi|hi|2

σ2
i pi|hi|2 + (1 + σ2

i )σ2
id

]
≥ γN

where the expected value is the average SNR due to the i-th channel
at the fusion center over the lifetime of the network. Define

γi
Δ
= E

[
pi|hi|2

σ2
i pi|hi|2 + (1 + σ2

i )σ2
id

]
.

Then the SNR constraint is
∑M

i=1 γi ≥ γ. If over the lifetime of the
network i-th sensor provides an average SNR of γi at the fusion cen-
ter such that the lifetime of node is maximized and

∑M
i=1 γi = γ,

we have solved the problem. We start by solving the problem of
maximizing the lifetime of the i-th node while meeting the average
SNR requirement γi. Later we propose a numerical algorithm that
assigns the proper average SNR to each sensor such that sum SNR
requirement is satisfied. Since each sensor has its own energy sup-
ply, maximizing the individual lifetime is equivalent to minimizing
the power consumption. Thus we have the following convex opti-
mization problem for the i-th sensor.

min

N∑
j=1

pij

s.t. E

[
pij |hij |2

σ2
i pij |hij |2 + (1 + σ2

i )σ2
id

]
≥ γi j = 1, . . . , N

pij ≥ 0 ∀j

Again, using the weak law of large numbers we can rewrite the
problem.

min

N∑
j=1

pij

s.t.
N∑

j=1

[
pij |hij |2

σ2
i pij |hij |2 + (1 + σ2

i )σ2
id

]
≥ γiN

pij ≥ 0 ∀j (5)

The Lagrangian L of (5) can be written as:

L(p, λ, ν) =
N∑

j=1

pij −
N∑

j=1

λjpij

+ νi

(
γiN −

N∑
j=1

(
pij |hij |2

σ2
i pij |hij |2 + (1 + σ2

i )σ2
id

))
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The KKT conditions [4] for the problem are given by:

λj ≥ 0 , λjpij = 0 ∀j , νi ≥ 0

νi

(
γiN −

N∑
j=1

(
pij |hij |2

σ2
i pij |hij |2 + (1 + σ2

i )σ2
id

))
= 0

∂L
∂pij

= 1 − λj − νi
|hij |2(1 + σ2

i )σ2
id

(σ2
i p2

ij |hij |2 + (1 + σ2
i )σ2

id)2
= 0 (6)

If νi = 0 using the last KKT condition, it would mean that λj =
1 ∀j, which from complementary slackness implies that pij = 0 ∀j.
This result is not acceptable which implies that νi > 0. So since
νi > 0 again because of complementary slackness it implies that
the first constraint in (5) is active at the optimal point. The optimal
solution is obtained by solving the KKT conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λj = 1 − νi
|hij |2(1+σ2

i )σ2
id

(σ2
i p2

ij |hij |2+(1+σ2
i )σ2

id)
2

νi ≤ (σ2
i p2

ij |hij |2+(1+σ2
i )σ2

id)
2

|hij |2(1+σ2
i )σ2

id

pij > 0 ⇒ λj = 0 if νi >
((1+σ2

i )σ2
id)2

|hij |2(1+σ2
i )σ2

id

λj > 0 ⇒ pij = 0 if νi <
((1+σ2

i )σ2
id)2

|hij |2(1+σ2
i )σ2

id

Solving for pij > 0 and λj = 0 from Eq. (6), we get the following
water-filling solution.

pij =

⎧⎨
⎩
|hij |√νi

√
(1+σ2

i )σ2
id
−(1+σ2

i )σ2
id

σ2
i |hij |2 |hij |2 >

(1+σ2
i )σ2

id
νi

0 |hij |2 <
(1+σ2

o)σ2
id

νi

(7)
The main challenge of the problem now lies in finding the value of
νi since we do not know the values for |hij |s. We only know they
are i.i.d distributed according to (2). In order to find the value of νi,
first we need to express the SNR (S) in terms of our optimal power
transmission solution.

Sij =

{
1

σ2
i
− αi

σ2
i

1
|hij | |hij | > αi

0 |hij | < αi

(8)

where Sij is the received SNR at the fusion center from the i-th

sensor at the j-th transmission period and αi ≡
√

(1+σ2
i )σ2

id
νi

. We

need to find the expected value of the the SNR due to the i-th sensor
at the fusion center over the lifetime of the network, which we denote
by E[Si]. A assuming that |hi| has pdf defined in (1), we can find
the E[Si]. In general if we have random variables X and Y such
that:

Y =

{
C + g(X) X > b

0 X < b

then

E[Y ] = C

∫ ∞

b

f(x)dx +

∫ ∞

b

f(x)g(x)dx (9)

where, f(x) is the pdf of X . Using Eq. (9) and assuming that |hi|
has pdf defined in (1), then

E[Si] =
1

σ2
i

exp

(−α2
i

2σ2
hi

)
− αi

σ2
i

∫ ∞

αi

1

σ2
hi

exp

(−x2

2σ2
hi

)
dx

E[Si] =
1

σ2
i

exp

(−α2
i

2σ2
hi

)
− αi

σ2
i

(√
2π

2σhi

(
1 − erf

(
αi√
2σhi

)))
(10)

where erf(·) is the one-sided error function. From Eq. (4), we know
that E[Si] = γi, so to find the value of νi, we need to solve the
following problem:

γi =
1

σ2
i

exp

(−α2
i

2σ2
hi

)
− αi

σ2
i

(√
2π

2σhi

(
1 − erf

(
αi√
2σhi

)))
(11)

There is no closed form solution of the above equation and it must
be solved numerically. Having found νi for i = 1, . . . , M then

pij =

√
(1 + σ2

i ) σ2
id

σ2
i |h2

ij

(√
νi|hij | −

√
(1 + σ2

i ) σ2
id

)+

where we define (x)+ = max{x, 0}. We can also find the E[pi] :

E[pi] =

√
πνi(1 + σ2

i )σ2
id√

2σhiσ2
i

[
1 − erf

(
αi√
2σhi

)]

− (1 + σ2
i )σ2

id

2σ2
i σ2

hi

E1

(
α2

i

2σ2
hi

)

where En(x) =
∫∞
1

e−xt

tn dt, (x > 0, n = 0, 1, ...)is the exponen-
tial integral function.

Once we have found the E[pi], the expected lifetime of the node
can also be determined. Assume that the i-th node has as initial en-
ergy of Ei. Also for simplicity take each transmission period to be
1s. Thus the lifetime of the node is simply the number of transmis-
sions. Ei =

∑N
j=1 pij . Assuming N 	 1 it follows from the Law

of Large Numbers [3] that
∑N

j=1 pij = NE[pi], so N = Ei
E[pi]

.

Thus

N = Ei ×
{√

πνi(1 + σ2
i )σ2

id√
2σhiσ2

i

[
1 − erf

(
αi√
2σhi

)]

− (1 + σ2
i )σ2

id

2σ2
i σ2

hi

E1

(
α2

i

2σ2
hi

)}−1

(12)

We can also find the pdf of Si of the sensor at the fusion center.
Finding the pdf Si allows us to do outage analysis for the sensor. The
pdf of Si, which we denote by fSi(s), is defined by the following
expression:

fSi(s) =

[
1 − exp

(−α2
i

2σ2
hi

)]
δ(s)

+
σ2

i α2
i

σ2
hi(1 − sσ2

i )3
exp

( −α2
i

2σ2
hi(1 − sσ2

i )2

)
(13)

where δ(s) is the Dirac delta function. It can be seen from the pdf
that Si is a mixed random variable and its support region is [0, 1

σ2
i
).

4. NETWORK POWER SCHEDULING

In the previous section we found the optimal solution that will max-
imize the lifetime of a sensor such that the expected value of the
received SNR at the fusion center will be a given value. Now we
consider the question of how to assign an expected value for each
sensor (γi) such that

∑M
i=1 γi = γ and all the nodes have the same

expected lifetime (N ) . We assume that our network consists of M
sensors. We would like to maximize the lifetime of our network such
that the expected value of the total SNR at the fusion center be equal
to γ. We use the algorithm in Fig. 5 to find N and γ1, γ2, ..., γM .
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Fig. 3. Lifetime comparisons for identical sensors
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Fig. 4. Lifetime Comparisons for randomly chosen sensors

N = N0

Use (12) to find νi for i = 1, 2, ..., M
Use (10)to find E[si] for i = 1, 2, ..., M

while
∣∣∣∑M

i=1 E [Si] − γ
∣∣∣ > ε

N ← N γ
∑M

i=1 E[Si]

Use (12) to find νi for i = 1, 2, ..., M
Use (10)to find E[si] for i = 1, 2, ..., M
end
γi = E[Si]

Fig. 5. Algorithm for allocation of partial SNR’s

5. NUMERICAL RESULTS

For our numerical results, we consider two different cases and in
each case we compare the performance of our decomposition life-
time maximizing (DLM) method against the minimum-total-energy
(MTE) [1] and equal-power (EP) strategies. For the EP strategy, we
assign power to each sensor according to the residual energy left in
the sensor.

In the first experiment, we show the effect of increasing num-
ber of sensors M , under equal statistics, where the required SNR at
destination is normalized to the number of sensors, i.e., Mγ0. For
our method this means that each sensor on average will provide an
SNR of γ0 over its lifetime. This normalization removes the effect
of additional energy injected into the network via additional sensors.
The results show the consistence of the performance of our method
across different sizes. (See Fig. 3). From the numerical results one
suspects that our method provides an upper bound for the MTE al-
gorithm as the number of sensors approaches infinity, but we have
no theoretical results at the present to support this conjecture.

For the second part we generate σ2
i , Ei , and σhi randomly such

that, σ2
i ∈ U [0.05, 0.1] , Ei ∈ U [250, 500] , and σhi ∈ U [0.1, 0.2].

Where U [a, b] denotes uniform distribution between a and b. For
simplicity we take all the destination noise variances to be 0.08 and
we require an average SNR of 10dB at the receiver. (See Fig. 4).

Please note that no dynamic programming simulations are pre-

sented due to their immense computational complexity that is be-
yond most existing computational facilities. We note that the main
point of this work is not to claim any improvement over dynamic
programming, but rather to provide a pragmatic method with fewer
requirements.

6. CONCLUSION

This paper develops a solution for maximizing the lifetime of a co-
operative sensor network, subject to an average SNR requirement,
in an environment where each sensor has an individual battery, as
well as time-varying channel conditions. The motivation for this
work has been to address three key difficulties that are associated
with a full-scale stochastic optimization, which is often performed
with dynamic programming: (a) unwieldy computational complex-
ity, and as a result: (b) quantization of the parameters, and (c) strong
CSI requirements. We propose a two-step approximation. First,
the SNR requirement is divided between the sensors according to
their channel statistics and battery power, and secondly, each sen-
sor’s transmission is controlled for best behavior across time. The
solution allows each sensor to operate independently of the other
sensors, which greatly reduces the implementation overhead com-
pared to MTE and dynamic programming algorithms.
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