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ABSTRACT

Secure wireless communications is a challenging problem due to the
shared nature of the wireless medium. Most existing security pro-
tocols apply cryptographic techniques for bit scrambling at the ap-
plication layer by exploiting a shared secret key between pairs of
communicating nodes. However, more recent research argues that
multipath propagation – a salient feature of wireless channels – pro-
vides a physical resource for secure communications. In this context,
we propose a protocol that exploits the inherent randomness in mul-
tipath wireless channels for generating secret keys through channel
estimation and quantization. Our approach is particularly attractive
in wideband channels which exhibit a large number of statistically
independent degrees of freedom (DoF), thereby enabling the genera-
tion of large, more-secure, keys. We show that the resulting keys are
distinct for distinct pairwise links with a probability that increases
exponentially with the key-size/channel DoF. We also characterize
the probability that the two users sharing a common link generate the
same key. This characterization is used to analyze the energy con-
sumption in successful acquisition of a secret key by the two users.
For a given key size, our results show that there is an optimum trans-
mit power, and an optimum quantization strategy, that minimizes the
energy consumption. The proposed approach to secret key genera-
tion through channel quantization also obviates the problem of key
pre-distribution inherent to many existing cryptographic approaches.

Index Terms— key pre-distribution, channel estimation, quan-
tization, wideband transceivers, energy minimization

1. INTRODUCTION

Secure wireless communications is a challenging problem due to the
inherently shared nature of the wireless medium. Existing works on
wireless security fall under three main categories. First, there is ex-
tensive work on secure protocols at the application layer based on
cryptographic methods in which the transmitted bits are scrambled
using a shared secret key between a pair of communication nodes
(see, e.g., [1, 2]). Second, a number of researchers are building on
the original information-theoretic formulation of secure communica-
tion due to Shannon [3] to characterize fundamental limits to secure
communications over wireless channels. In particular, the problem
of the wire-tap channel due to Wyner [4] is receiving considerable
attention. Third, more recently there has been interest in physical
layer security techniques that exploit the characteristics of wireless
channels and systems (see, e.g., [5–7]).

In this paper, we propose a physical layer technique that ex-
ploits the characteristics of multipath propagation – a salient feature
of wireless channels – for secure communication. Specifically, we
exploit the fact that for sufficiently rich multipath, the wireless chan-
nels associated with pairwise communication links between users
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with distinct spatial locations exhibit statistically independent char-
acteristics. In essence, in time-division duplexed systems, each pair
of users shares a common stochastic channel that is statistically in-
dependent of all other shared channels in pairwise communication
links. Furthermore, the independence of distinct channels increases
with the dimension of the signal space, which can be quite large
for modern wideband, multiantenna transceivers. Specifically, we
propose a method for generating a secret key for each pairwise com-
munication link by directly quantizing the phases of the channel co-
efficients of the shared common channel. Thus, the problem of key
pre-distribution (see, e.g., [2]), common to many application-layer
cryptographic methods, is obviated.

In the context of existing work, our approach is most similar
to [5] in which the differential phase between two frequency tones is
encoded for key generation. Larger keys are generated by repeating
the two-tone procedure over time. Error control coding techniques
are also proposed in [5] for enhancing the reliability of key acqui-
sition. In contrast, our emphasis is on exploiting the large number
of random degrees of freedom in wideband wireless channels for
generation of large secret keys. A significant contribution of this
paper is the characterization of a key parameter – the probability,
p(SINR, Q), that both ends of a link generate the same quantization
index for a particular phase – as a function of the operating signal-to-
interference-and-noise ratio SINR and the number of quantization
levels Q. This characterization is then exploited for optimizing the
protocol for successful key acquisition with minimum energy con-
sumption. Thus, the results of this paper and [5] are complementary:
the use of error control coding in [5] could enhance the performance
of the scheme proposed here, whereas the characterization of p could
facilitate the analysis and optimization of the method in [5]. Finally,
we note that [6] builds on the protocol in [5] to propose secure trans-
mission schemes, whereas [7] analyzes the information-theoretic as-
pects of secure communication in ultra-wideband channels.

2. SYSTEM MODEL
2.1. Physical Layer Model
We consider an OFDM system with N = TW tones: each OFDM
packet is of duration T and bandwidth W . The system equation from
user i to user j is given by

rj = H j,ixi + wj (1)

where xi and rj denote the N dimensional transmitted and received
signal vectors, H j,i ∈ CN×N denotes the (stochastic) channel ma-
trix, and wj denotes the N dimensional vector of AWGN and inter-
ference from other simultaneous transmissions. We consider recip-
rocal channels, H i,j = H j,i, as in time-division duplexing.

In slowly time-varying channels, H is diagonal. To capture the
statistically independent degrees of freedom (DoF), we consider a
simple block fading model for H :

H = diag(h(1) · · ·h(1), h(2) · · ·h(2), · · · , h(D) · · ·h(D)) (2)
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where the frequency band is split into D coherence bands, with
Nc = N/D OFDM tones per coherence band. In Rayleigh fading,
the channel is characterized by D i.i.d. zero-mean complex Gaus-
sian random variables {h(1), · · · , h(D)} and the Nc coefficients in
the i-th coherence band are identical. Without loss of generality, we
assume that h(i) ∼ CN (0, 1) and define h = [h(1), · · · , h(D)]T

as the vector of i.i.d. channel coefficients, h ∼ CN (0, I).

The basic idea behind cryptographic methods for secure com-
munications is that each pair of communicating nodes share a secret
key, s, not known to any other nodes, for encrypting their data. For
our purposes, the most important property of a key, s, is that it is a
large integer, e.g. a 128 bit integer. The key idea behind this work
to generate secret keys, {si}, associated with distinct pairwise links,
is to exploit the inherent randomness in the corresponding (recipro-
cal) channel vectors, {hi}. The randomness of the channel vectors
associated with different pairwise communication links is a function
of the richness of multipath and minimum spatial distance between
different nodes. In this paper, we assume that the multipath is suf-
ficiently rich and/or the users are sufficiently far apart so that all
pairwise channel vectors, {hi}, are statistically independent of each
other, in addition to having D i.i.d. entries.

Suppose that two nodes in a network want to establish a se-
cure communication link. We propose a generalized request-to-send
(RTS) protocol in which: i) both nodes estimate their common chan-
nel hi, and ii) generate their secret key si from the channel estimates.
Note that this generalized RTS protocol requires training signals in
both directions to help estimate hi. We consider a MMSE channel
estimator for which the channel estimate generally takes the form

ĥi = hi + Δhi (3)

where ĥi denotes the estimate of hi. The errors in the estimate,
Δhi, which include the impact of interference, can also be modeled
as zero-mean Gaussian under mild assumptions. Furthermore, since
the channel coefficients in hi are i.i.d., it can be shown that the com-
ponents of Δhi are also statistically independent but are not identi-
cally distributed in general. That is, Δhi ∼ CN (0,Λi) where Λi is
a diagonal error covariance matrix. In this paper, for simplicity, we
assume that the component errors, in addition to being independent
are also identically distributed; that is,

Δhi ∼ CN (0, σ2I) = CN
„
0,

I

SINR

«
(4)

where σ2 denotes the combined variance of noise and interference,
and SINR = E[|hi(k)|2]/E[|Δhi(k)|2] = 1/σ2 the signal-to-
interference-and-noise-ratio in the estimate of each channel coeffi-
cient in (3). The SINR can be increased by increasing the power of
training signals and is a key parameter that governs the performance
of the proposed key generation scheme.

2.2. Random Key Generation From Channel Estimates

Let ĥ denote the estimate of the common channel in a pairwise com-

munication link. How do we generate a key from ĥ? A simple strat-
egy is to quantize the phase of each component of the estimate

ĥ(k) = |ĥ(k)|ejθ̂(k) , k = 1, · · · , D (5)

θ̂(k) = tan−1(imag(ĥ(k))/real(ĥ(k))) (6)

where θ̂(k) ∈ [0, 2π] denotes the random phase of ĥ(k). We uni-

formly quantize the phase of each component of ĥ into Q values.

Let fQ : C → {1, · · · , Q} denote this element-wise mapping. For
h = |h|ejθ , we have

fQ(h) = fQ(θ) = q if θ ∈
»
2π(q − 1)

Q
,
2πq

Q

«
, q = 1, · · · , Q .

(7)
Since the phase of each channel coefficient in (6) is random, we have

P
“
fQ(ĥ(k)) = q

”
= P

“
fQ(θ̂(k)) = q

”
=

1

Q
. (8)

Let fQ : CD → {1, · · · , Q}D denote the vector-valued function
that maps a D dimensional channel vector h into D quantized values
corresponding to element-wise Q-level quantization of the phase of
each component of h; that is,

fQ(h) = [fQ (h(1)) , · · · , fQ (h(D))] . (9)

The key s associated with ĥ is defined by the correspondence

s
“
ĥ

”
↔ fQ

“
ĥ

”
(10)

Let us elaborate on this correspondence. First, the quantization of
each phase value generates log2(Q) bits of information since the

phase is random. Furthermore, since the different components of ĥ
in (3) are also statistically independent, applying the quantization to

the D elements of ĥ, as in (10), yields

bkey = D log2(Q) (11)

bits of information. Thus, in essence, fQ

“
ĥ

”
generates a bkey-bit

integer and this integer serves as the key, s, in (10). If s represents a
bkey-bit integer (say bkey = 128), then for a given D, the required

number of quantization values is given by Q = 2
bkey

D . For example,
for bkey = 256 and D = 64 (64 independent coherence bands in an
OFDM channel), Q = 16.

3. PERFORMANCE OF CHANNEL-BASED RANDOM KEY
GENERATION

3.1. Independence of Keys for Distinct Links
From a security perspective, the keys associated with distinct pair-
wise links should be distinct with high probability. Let h1 and h2

represent the channels corresponding to two distinct pairwise links,
which are statistically independent under our assumptions. It follows

that the estimates, ĥ1 and ĥ2, are also statistically independent, and

as a result the bQ-bit integers generated by fQ

“
ĥ1

”
and fQ

“
ĥ2

”
are also statistically independent. The following result quantifies the
probability of generating distinct keys s1 and s2 via (10).

Proposition 1 Let s1 ↔ fQ

“
ĥ1

”
and s2 ↔ fQ

“
ĥ2

”
represent

bkey-bit keys. Under the assumption that h1 and h2 are statistically
independent D-dimensional vectors

P (s1 �= s2) = P
“
fQ

“
ĥ1

”
�= fQ

“
ĥ2

””
= 1− 1

QD
= 1− 1

2bkey

(12)

Proof: The proof follows from a direct computation

P
“
fQ

“
ĥ1

”
�= fQ

“
ĥ2

””
= 1 − P

“
fQ

“
ĥ1

”
= fQ

“
ĥ2

””

= 1 −
DY

k=1

P
“
fQ

“
ĥ1(k)

”
= fQ

“
ĥ2(k)

””
(13)

= 1 −
DY

k=1

1

Q
= 1 − 1

QD
(14)
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where the equality in (13) follows from the independence of the com-
ponents of channel estimates and the element-wise operation of fQ.
The second equality in (12) follows from (11). �

Note that the above result is independent of SINR. It basically
says that the inherent channel randomness serves as a random key
(number) generator via the proposed phase quantization.

3.2. Secret Key for A Common Link
In this section we analyze the acquisition of a shared secret key by
the two nodes forming a pairwise communication link. Each user
generates a key from its estimate of the common (reciprocal) chan-
nel via (10). For each pair of keys generated, the users do a secure
handshake (e.g. along the lines of [2]) to confirm if they have gener-
ated identical keys.1 If the keys are not identical, the users generate
a new pair of keys, based on a new (independent) estimate of the
channel. The process continues until both users generate the same
key. Formally, let pkey denote the probability that both users gen-
erate the same key in one handshake. Let n denote the number of
(independent) handshakes. Each handshake is a Bernoulli trial with
pkey the probability of success. Then, the probability, psucc(n), that
there is at least one successful handshake in n trials is given by

psucc(n) = 1 − (1 − pkey)n
(15)

For a given pkey , the number of handshakes needed to achieve a
desired (sufficiently high) psucc is given by

nsucc =
log(1 − psucc)

log(1 − pkey)
. (16)

We now outline our approach for estimating pkey . Let ho =

[ho(1), · · · , ho(D)]T denote the common channel and let ĥF (for-

ward) and ĥB (backward) denote the estimates of ho at the two ends
of the link. We model the channel estimates as

ĥF = ho + ΔhF , ĥB = ho + ΔhB (17)

where ΔhF and ΔhB are modeled as in (4) and are also indepen-
dent. The phase of each coefficient is quantized into Q levels result-
ing in a key with bkey = D log2(Q) bits. Let p denote the probabil-
ity that both users generate the same quantization index for a particu-
lar phase. By the assumption of uniform SINR across all coefficients
(see (4)), p is identical for all coefficients. Thus, the probability that
both users generate the same key is given by

pkey = pD
(18)

and the problem of estimating pkey boils down to estimating p.

h

ĥ

o

ˆ

h sin

oh

2
Q

Fig. 1. The channel phase geometry.
1In the case of perfect channel estimates (no noise/interference), the two

nodes will always generate the same key due to the common channel.

The probability p corresponds to generating a quantization index
for one channel coefficient. As illustrated in Fig. 1, we can model
the estimate of any one channel coefficient more explicitly as

ĥF = ho + ΔhF , |ĥF |ejθ̂F = |ho|ejθo + |ΔhF |ejφF

ĥB = ho + ΔhB , |ĥB |ejθ̂B = |ho|ejθo + |ΔhB |ejφB(19)

where the amplitudes are Rayleigh distributed and the phases are

uniformly distributed over [0, 2π]. The phases θ̂F and θ̂B are uni-
formly quantized into Q levels with a resolution δθ = 2π/Q, as in

(7). Let θ̂F,Q and θ̂B,Q denote the quantized values. The probability
p is a function of SINR and Q

p(SINR, Q) = P (θ̂F,Q = θ̂B,Q) , (20)

that is, the probability that the two quantized phases lie in the same
cell. Since, conditioned on θo, the phases at the two ends are inde-
pendent, we can simply focus on a single phase

θ̂ = θo + Δθ (21)

where Δθ reflects the perturbation around the true underlying chan-
nel phase, θo, due to the interference and noise in the channel esti-
mates. There are three key quantities in our analysis (see Fig. 1):

X =
|Δh|
|ho| − inverse instantaneous SINR (22)

θo − phase of ho (23)

φ − phase of Δh (24)

where φ is measured relative to θo. Due to symmetry, we can focus
on computing p when the true channel phase is in the first quan-
tization cell; θo ∈ [0, 2π/Q). As illustrated in Fig. 1, the phase
perturbation can be computed as

tan(Δθ) =
|Δh| sin(φ)

|ho| + |Δh| cos(φ)
=

X sin(φ)

1 + X cos(φ)
≈ X sin(φ)(25)

Δθ ≈ tan−1(X sin(φ)) (26)

where the approximation in (25) is valid at high SINR’s (X � 1
with high probability). Note that φ ∈ [0, π) ↔ Δθ ≥ 0 and φ ∈
[π, 2π) ↔ Δθ ≤ 0.

We provide an approximate lower bound to p at high SINR’s.

Let γ > 0 denote a threshold and let A = {θ̂F,Q = θ̂F,B}. Then,
we have the following lower bound on p

p(SINR, Q) = P (A) = E[1A] = E [1A|X ≤ γ] + E [1A|X > γ]

≥ E [1A|X ≤ γ] (27)

where 1A denotes the indicator function for the set A. The lower-
bound can be made arbitrarily tight by making

E [1A|X > γ] ≤ P (X > γ) =
1

γ2SINR + 1
(28)

arbitrarily small by choosing γ2SINR sufficiently large. The last
equality follows from the cdf/pdf of X

FX(x) = P (X ≤ x) =
x2

x2 + σ2
, fX(x) =

2xσ2

(x2 + σ2)2
. (29)
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In particular, we use the following value for the threshold2 γ as a
function of the quantization resolution, δθ = 2π/Q

γ = γmax = tan(δθ/2) = tan(π/Q) . (30)

The following result quantifies the probability p(SINR, Q), which
we state without proof due to lack of space.

Proposition 2 For sufficiently high SINR, the probability that the
same quantization index is generated for a particular channel coef-
ficient at both ends of a link can be approximated as

p(SINR, Q) = P
“
θ̂F,Q = θ̂B,Q

”
≥ E[1A|X ≤ γmax]

≈ 1

2

tan2(δθ/2)

tan2(δθ/2) + σ2
+

1

δθ

Z δθ/2

0

tan2(θo)

tan2(θo) + σ2
dθo

+
4

π2δθ

Z δθ/2

θo=0

Z tan(δθ/2)

x=tan(θo)

2xσ2

(x2 + σ2)2ˆ
sin−1(tan(θo)/x)

˜2
dxdθo (31)

where γmax = tan(δθ/2), δθ = 2π/Q, and σ2 = 1/SINR.
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Fig. 2. Analytical vs. simulated values of p(SINR, Q).

Fig. 2 compares the analytical (Prop. 2) and numerically esti-
mated values of p as a function of SINR for different values of Q.
As expected, a higher SINR is needed to achieve a desired p for
higher values of Q. Furthermore, the analytical approximation is
quite accurate for SINR ≥ 20 dB and Q ≤ 16.

3.3. Minimum Energy Consumption for Secret Key Acquisition
In this section, we estimate the energy required for successful acqui-
sition of a secret key by the two nodes of a pairwise communication
link. For a given key size, bkey , and psucc, the energy consumed can
be estimated as

E ∝ SINRDnsucc = SINRD
log(1 − psucc)

log(1 − p(SINR, Q)D)
(32)

since SINR is per channel coefficient, D is the total number of chan-
nel coefficients, and nsucc is the minimum number of handshakes
needed for guaranteeing successful key acquisition with probability

2γmax reflects the largest value of X that does not result in an error when
θo = δθ/2; that is, θo is at the center of the quantization cell.

psucc. We are particularly interested in achieving a desired psucc

(say 0.99) for given bkey (say 128 bits) with minimum energy con-
sumption. First, note from (32) that as SINR increases, the first
factor in (32) increases, but so does p(SINR, Q), which reduces E .
Thus, we expect an optimum value of SINR that minimizes E . Sec-
ond, this optimum SINR value is a function of Q and D that are con-
strained through (11). Thus, overall, we expect an optimum value of
Q that minimizes E for a given psucc and bkey:

Qopt(psucc, bkey) ↔ SINRopt ↔ Emin (33)

This is illustrated in Fig. 3 where E is plotted as a function of SINR

20 25 30 35 40
105

106

107

SINR (dB)

E
N

E
R

G
Y

b=64

Q=2
Q=4
Q=8
Q=16

Fig. 3. E as a function of SINR for different values of Q.

for bkey = 64, psucc = 0.99, and different values of Q. As evident,
Qopt = 4 (Dopt = 32) yields the lowest energy at SINRopt ≈ 23
dB. We note that the same value of Qopt works for bkey = 128
or 256, but the corresponding SINRopt gets higher with increasing
bkey (as expected), resulting in higher Emin for larger values of bkey .
The corresponding plots are not shown here for lack of space.
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