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Abstract—We aim to characterize the maximum link throughput
of a multi-channel opportunistic communication system. The states
of these channels evolve as independent and identically distributed
Markov processes (the Gilbert-Elliot channel model). A user, with limited
sensing and access capability, chooses one channel to sense and access
in each slot and collects a reward determined by the state of the
chosen channel. Such a problem arises in cognitive radio networks for
spectrum overlay, opportunistic transmissions in fading environments,
and resource-constrained jamming and anti-jamming. The objective of
this paper is to characterize the optimal performance of such systems.
The problem can be generally formulated as obtaining the maximum
expected long-term reward of a partially observable Markov decision
process or a restless multi-armed bandit process, for which analytical
characterizations are rare. Exploiting the structure and optimality of the
myopic channel selection policy established recently, we obtain a closed-
form expression of the maximum link throughput for two-channel systems
and lower and upper bounds when there are more than two channels.
These results allow us to study the rate at which the optimal performance
of an opportunistic system increases with the number of channels and to
obtain the limiting performance as the number of channels approaches
to infinity.

Index Terms—Opportunistic access, cognitive radio, spectrum overlay,
dynamic channel selection, myopic policy.

I. INTRODUCTION

The fundamental idea of opportunistic communications is to adapt
the transmission parameters (data rate, modulation, transmission
power, etc.) according to the state of the communication environment
including, for example, fading conditions, interference level, and
buffer state. Since the seminal work by Knopp and Humblet in
1995 [1], the concept of opportunistic communications has found
applications beyond transmission over fading channels. An emerging
application is cognitive radios for spectrum overlay (also referred to
as opportunistic spectrum access), where secondary users search in
the spectrum for idle channels temporarily unused by primary users
[2]. Another application is resource-constrained jamming and anti-
jamming, where a jammer seeks channels occupied by users or a
user tries to avoid jammers.
We take a simplified model of these opportunistic communication

systems with N parallel channels. These N channels are modelled
as independent and identically distributed Gilbert-Elliot channels [3]
as illustrated in Fig. 1. The state of a channel — “good” (1) or
“bad” (0) — indicates the desirability of accessing this channel and
determines the resulting reward. With limited sensing and access
capability, a user chooses one of the channels to sense and access in
each slot, aiming to maximize its expected long-term reward (i.e., ,
throughput). The objective of this paper is to characterize analytically
the maximum throughput of such a system. In particular, we are
interested in the relationship between the maximum throughput and
the number of channels.
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Fig. 1. The Gilber-Elliot channel model.

This problem can be treated as a partially observable Markov
decision process (POMDP) [4] or more specifically, a restless multi-
armed bandit process [5] due to the independence across channels.
The maximum throughput of the multi-channel opportunistic system
is essentially the maximum expected total reward, or the value
function, of a POMDP [6]. Unfortunately, obtaining optimal solutions
to POMDPs, even numerically, is often intractable, and closed-form
expressions for value functions are rare.
In this paper, we obtain a closed-form expression of the maximum

throughput for two-channel opportunistic systems. For systems with
more than two channels, we develop lower and upper bounds that
monotonically tighten as the number N of channels increases. These
results allow us to study the rate at which the optimal performance of
an opportunistic system increases with N and to obtain the limiting
performance as N approaches to infinity. They demonstrate that the
optimal link throughput of a multi-channel opportunistic system with
limited sensing quickly saturates as the number of channel increases.
Our analysis hinges on the structure and optimality of the myopic

policy established in [7], [8]. The optimality of the myopic policy
makes it sufficient to obtain the maximum throughput from the
performance of the myopic policy, and the simple structure of the
myopic policy makes it possible to characterize analytically its per-
formance. Specifically, based on the structure of the myopic policy,
we show that the performance of the myopic policy is determined by
the stationary distributions of a higher-order countable-state Markov
chain. For N = 2, we obtain the stationary distribution of this
Markov chain in closed-form, leading to exact characterizations of
the maximum throughput. For N > 2, we construct first-order
Markov processes that stochastically dominate or are dominated by
this higher-order Markov chain. The stationary distributions of the
former, again obtained in closed-forms, lead to lower and upper
bounds on the maximum throughput.

II. PROBLEM FORMULATION
We consider the scenario where a user is trying to access the wire-

less spectrum using a slotted transmission structure. The spectrum
consists of N independent and statistically identical channels. The
state Si(t) of channel i in slot t is given by a two-state discrete-time
Markov chain shown in Fig. 1.
At the beginning of each slot, the user selects one of the N

channels to sense. If the channel is sensed to be in the “good” state
(state 1), the user transmits and collects one unit of reward. Otherwise
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the user does not transmit (or transmits at a lower rate), collects
no reward, and waits until the next slot to make another choice.
The objective is to maximize the average reward (throughput) over
a horizon of T slots by choosing judiciously a sensing policy that
governs channel selection in each slot.
Due to limited sensing, the system state [S1(t), · · · , SN (t)] ∈

{0, 1}N in slot t is not fully observable to the user. It can, however,
infer the state from its decision and observation history. It has
been shown that a sufficient statistic of the system for optimal
decision making is given by the conditional probability that each
channel is in state 1 given all past decisions and observations [4].
Referred to as the belief vector, this sufficient statistic is denoted by
Ω(t)

Δ
= [ω1(t), · · · , ωN(t)], where ωi(t) is the conditional probability

that Si(t) = 1. Given the sensing action a and the observation Sa

in slot t, the belief vector for slot t + 1 can be obtained as follows.

ωi(t+1) =

��
�

p11, a = i, Sa = 1
p01, a = i, Sa = 0
ωi(t)p11 + (1− ωi(t))p01, a �= i

. (1)

A sensing policy π specifies a sequence of functions π =
[π1, π2, · · · , πT ] where πt maps a belief vector Ω(t) to a sensing
action a(t) ∈ {1, · · · , N} for slot t. Multi-channel opportunistic
access can thus be formulated as the following stochastic control
problem.

π
∗ = arg max

π
Eπ

�
T�

t=1

R(πt(Ω(t)))|Ωo

�
,

where R(πt(Ω(t))) is the reward obtained when the belief is Ω(t)
and channel πt(Ω(t)) is selected, and Ωo is the initial belief vector.
If no information on the initial system state is available, each entry
of Ωo can be set to the stationary distribution ωo of the underlying
Markov chain:

ωo =
p01

p01 + p10
. (2)

III. STRUCTURE AND OPTIMALITY OF MYOPIC POLICY

A. The Value Function

Let Vt(Ω) be the value function, which represents the maximum
expected total reward that can be obtained starting from slot t given
the current belief vector Ω. Given that the user takes action a

and observes Sa, the reward that can be accumulated starting from
slot t consists of two parts: the immediate reward Ra(Ω) = ωa

and the maximum expected future reward Vt+1(T (Ω|a, sa)), where
T (Ω|a, sa) denotes the updated belief vector for slot t + 1 as given
in (1). Averaging over all possible observations Sa and maximizing
over all actions a, we arrive at the following optimality equation.

VT (Ω) = max
a=1,··· ,N

ωa

Vt(Ω) = max
a=1,··· ,N

(ωa + ωaVt+1 (T (Ω|a, 1)))

+(1− ωa)Vt+1 (T (Ω|a, 0)) . (3)

In theory, the optimal policy π∗ and its performance V1(Ωo) can be
obtained by solving the above dynamic programming. Unfortunately,
due to the impact of the current action on the future reward and
the uncountable space of the belief vector Ω, obtaining the optimal
solution using directly the above recursive equations is computation-
ally prohibitive. Even when approximate numerical solutions can be
obtained, they do not provide insight into system design or analytical
characterizations of the optimal performance V1(Ωo).

B. The Myopic Policy
A myopic policy ignores the impact of the current action on the

future reward, focusing solely on maximizing the expected immediate
reward E[Ra]. Myopic policies are thus stationary. The myopic action
â under belief state Ω = [ω1, · · · , ωN ] is simply given by

â(Ω) = arg max
a=1,··· ,N

ωa. (4)

In general, obtaining the myopic action in each slot requires the
recursive update of the belief vector Ω as given in (1), which requires
the knowledge of the transition probabilities {pij}. Interestingly, it
has been shown in [7] that the myopic policy has a simple structure
that does not need the update of the belief vector or the precise
knowledge of the transition probabilities.
Specifically, when p11 ≥ p01, the myopic action is to stay in the

same channel if the channel in the current slot is in state 1. Otherwise,
the user switches to the channel visited the longest time ago. The
channel selection is thus in a round robin fashion as illustrated in
Fig. 2: sense N channels in turn with a random switching time (when
the current channel transits to state 0).

Ch 1 Ch 2 Ch 3

when observe 0

when observe 0when observe 0

Fig. 2. The structure of the myopic policy for p11 ≥ p01 (N = 3).

When p11 < p01, the myopic action is to stay in the same channel
when the channel is in state 0 and switch otherwise. When a channel
switch is needed, the user chooses, among those channels to which
the last visit occurred an even number of slots ago, the one most
recently visited. If there are no such channels, the user chooses the
channel visited the longest time ago.
Note that the above simple structure of the myopic policy reveals

that other than the order of p11 and p01, the knowledge of the
transition probabilities are unnecessary.
Surprisingly, the myopic policy with such a simple and robust

structure achieves the optimal performance for N = 2 [7]. It has been
conjectured in [7] (based on simulation results) that the optimality of
the myopic policy holds for allN . In a recent work [8], the optimality
of the myopic policy has been established for a general N under the
condition of 0 ≤ p11 − p01 ≤ 0.5.

IV. LINK THROUGHPUT LIMIT
The objective of this paper is to characterize the link throughput

limit U of multi-channel opportunistic access with limited sensing.
Specifically, we define the link throughput limit as

U(Ωo) � lim
T→∞

V̂1(Ωo)

T
,

where V̂1(Ωo) is the expected total reward obtained in T slots under
the myopic policy when the initial belief is Ωo.
Our analysis hinges on the structure and optimality of the myopic

policy given in Sec. III-B. The optimality of the myopic policy makes
it sufficient to obtain U from the performance of the myopic policy,
and the simple structure of the myopic policy makes it possible to
characterize analytically its performance.
From the structure of the myopic policy we can see that the

key to the throughput is how often the user switches channels, or
equivalently, how long it stays in the same channel. When p11 ≥ p01,
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the event of channel switch is equivalent to a slot without reward.
The opposite holds when p11 < p01: a channel switch corresponds
to a slot with reward.

channel switch

Lk = 3 Lk+1 = 6 t

Fig. 3. The transmission period structure.

We thus introduce the concept of transmission period, which is
the time the user stays in the same channel, as illustrated in Fig. 3.
Let Lk denote the length of the kth transmission period. We thus
have a discrete-time random process {Lk}

∞

k=1 with a sample space
of positive integers. Let L̄ = limK→∞

ΣK

k=1
Lk

K
denote the average

length of a transmission period.

Lemma 1: The throughput limit U is given by

U(Ωo) =

�
1− 1

L̄
, p11 ≥ p01

1
L̄

, p11 < p01

. (5)

Proof: See [9].

For N = 2, the uniqueness and closed-form expressions of L̄

can be established, which leads to a closed-form expression of the
throughput limit U(Ωo) (see Sec. IV-A). For N > 2, lower and upper
bounds on U(Ωo) are obtained (see Sec. IV-B).
Proposition 1: : U(Ωo) ≡ U is independent of the initial belief

Ωo for (i) N = 2; (ii) N > 2 and p11 ≥ p01.
Proof: : See [9].

A. Link Throughput Limit for N = 2

For N = 2, {Lk}
∞

k=1 is a first-order Markov chain. We have the
following lemma.

Lemma 2: {Lk}
∞

k=1 is an irreducible and aperiodic first-order
Markov chain with the following unique stationary distribution (the
limiting distribution).

• Case 1: p11 ≥ p01

λl =

�
1− ω̄, l = 1

ω̄pl−2
11 p10, l ≥ 2

, (6)

where ω̄ is the expected probability that the channel we switch to is
in state 1, i.e., , the expected belief value of the channel we switch
to. It is given by

ω̄ =
p2
01

1 + p2
01 − A

, (7)

where A = p01

1+p01−p11
(1− (p11−p01)3(1−p11)

1−(p11)2+p11p01
).

• Case 2: p11 < p01

λl =

�
ω̄′, l = 1

(1− ω̄′)pl−2
00 p01, l ≥ 2

, (8)

where ω̄′ is the expected probability that the channel we switch to
is in state 1. It is given by

ω̄
′ =

B

1− p2
11 + B

, (9)

where B = p01

1+p01−p11
(1 + (p11−p01)3(1−p11)

1−(1−p01)(p11−p01)
).

Proof: See [9].

From Lemma 1 and 2, we obtain the closed-form expression of
the throughput limit U as follows.

Theorem 1: For N = 2, the throughput limit U is given by

U =

�
1− 1−p11

1+ω̄−p11
, p11 ≥ p01

p01

1−ω̄′+p01
, p11 < p01

, (10)

where ω̄ and ω̄′ are given, respectively, in (7) and (9).
Proof: See [9].

B. Link Throughput Limit for N > 2

For N > 2, {Lk}
∞

k=1 is a higher-order Markov chain. It is difficult
to obtain its stationary distributions in closed form. Our objective is
to develop lower and upper bounds on U .
The approach is to construct first-order Markov chains that sto-

chastically dominate or are dominated by {Lk}
∞

k=1. The limiting
distributions of these first-order Markov chains, which can be ob-
tained in closed-form, thus lead to lower and upper bounds on U

according to Lemma 1. Specifically, for p11 ≥ p01, a lower bound
on U is obtained by constructing a first-order Markov chain whose
limiting distribution is stochastically dominated by the stationary
distributions of {Lk}

∞

k=1. An upper bound on U is given by a
first-order Markov chain whose limiting distribution stochastically
dominates the stationary distributions of {Lk}

∞

k=1. Similarly, bounds
on U for p11 < p01 can be obtained.

Theorem 2: For N > 2, we have the following lower and upper
bounds on the throughput limit U .

• Case 1: p11 ≥ p01

C

C + (1−D + C)(1− p11)
≤ U ≤

ωo

1− p11 + ωo

, (11)

where ωo is given by (2), C = ωo(1− (p11 − p01)
N ),

D = ωo(1−
(p11−p01)N+1(1−p11)

1−(p11)2+p11p01
).

• Case 2: p11 < p01

p2
10

p01H − E
+ 1 ≤ U(Ωo) ≤

p2
10

p01G− E
+ 1 (12)

where E = p2
10(1 + p01) + p01(1− F ),

F = (1− p01)(1− ωo)(
1

2−p01
− p01(p11−p01)4

1−(p11−p01)2(1−p01)2
),

G = (1− ωo)(
1

2−p01
− p01(p11−p01)6

1−(p11−p01)2(1−p01)2
)

H = (1− ωo)(
1

2−p01
− p01(p11−p01)2N−1

1−(p11−p01)2(1−p01)2
)

• Monotonicity: for both cases, the difference between the upper
and lower bounds monotonically decreases with N ; when p11 ≥
p01, the lower bound converges to the upper bound as N →∞.
Proof: See [9].

The monotonicity of the difference between the upper and lower
bounds with respect to N shows that the performance of the multi-
channel opportunistic system improves with the number N of chan-
nels, as suggested by intuition. Note that the upper bounds on U

for both cases are independent of N . For p11 ≥ p01, the upper
bound gives the limiting performance of the opportunistic system
when N →∞.
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V. NUMERICAL EXAMPLES
In this section, we demonstrate the tightness of the bounds on

U given in Sec. IV-B by examining the relative difference d(N)
between the upper and the lower bound. In Fig. 4, we plot d(N = 5)
with respect to the upper bound for p11 ≥ p01. From Fig. 4 we
observe that for most values of p11 and p01, d(N = 5) is below 6%,
demonstrating the tightness of the bounds even for a small number
of channels. Furthermore, Fig. 4 shows that the bounds are tighter
for larger p01. Similarly observations can be drawn from Fig. 5 for
the case of p11 < p01.
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Fig. 4. The relative difference d(N = 5) between the upper and the lower
bound for p11 ≥ p01.
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Fig. 5. The relative difference d(N = 5) between the upper and the lower
bound for p11 < p01.

In Fig. 6 and 7 we examine the rate at which the lower bound
approaches to the upper bound as N increases. Specifically, we
plot the ratio of d(N = 10) to d(N = 3). We observe that in
both cases, the lower bound approaches to the upper bound quickly.
While demonstrating the usefulness of the bounds for small N ,
this observation conveys a pessimistic message: the optimal link
throughput of a multi-channel opportunistic system with limited
sensing quickly saturates as N increases.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have analyzed the performance of myopic sensing
in multi-channel opportunistic access under an i.i.d. Gilbert-Elliot
channel model. Based on the conjectured optimality of myopic sens-
ing policy, the obtained analytical results allow us to systematically
examine the impact of the number of channels and channel dynamics
(transition probabilities) on the system performance. Future work
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Fig. 6. The rate at which the lower bound approaches to the upper bound
as N increases (p11 ≥ p01).
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Fig. 7. The rate at which the lower bound approaches to the upper bound
as N increases (p11 < p01).

includes the generalization to cases with sensing errors and non-
identical channels. The former can again be addressed by exploiting
the structure and optimality of the myopic policy in the presence of
sensing errors as established in [10].
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