
SIGNAL MASKING IN GAUSSIAN CHANNELS

John A. Quinn

Faculty of Computing and I.T.
Makerere University

P.O. Box 7062, Kampala, Uganda

Christopher K.I. Williams

Institute for Adaptive and Neural Computation
University of Edinburgh

EH1 2QL, United Kingdom

ABSTRACT

We consider the problem of modifying the noise properties

of a channel in order to make the source as indecipherable

as possible given the output. Applications include jamming

communications, maintaining confidentiality near spoken con-

versations and masking noise pollution. We present results as

to how this can be done efficiently, assuming that we have a

Gaussian channel and a constraint on the power of the noise.

We go on to consider the case in which there is a positive sig-

nal which we want to remain coherent, as well as a negative

signal which we wish to confound. We also discuss the ap-

plication of the theory to acoustic signals, where we consider

aspects of the human auditory system.

Index Terms— Gaussian channels, Signal masking, Acous-

tic signal processing.

1. INTRODUCTION

The degradation of a source signal by means of adding a noisy

“counter-signal” is sometimes desirable. Consider, for exam-

ple, a scenario in which two conspirators evade eavesdroppers

by meeting in a bathroom with the taps running. In this pa-

per, we consider signals sent over a set of parallel Gaussian

channels, such that for each channel i, a source component

Xi ∼ N (0, Pi) is added to a noise component Si ∼ N (0, Qi)
to give the output Yi. This is illustrated in Figure 1(a). In

our problem, we want to minimise the mutual information

between the source and the output as far as possible. Intu-

itively, the best results are obtained by adding noise which

is close to the signal distribution, and we might naı̈vely set

Qi ∝ Pi. However, we show that under a power constraint

on S this is suboptimal. In section 2 we present results for

generating an optimal counter-signal distribution {Qi} given

such a constraint.

We then consider two extensions of this method. In sec-

tion 3, we look at the case in which there is also a positive

signal which we want to remain coherent, as well as a nega-

tive signal which we wish to confound. This arrangement is

pictured in Figure 1(b), where we now have the positive signal

X+
i ∼ N (0, P+

i ) and the negative signal X−
i ∼ N (0, P−i ).

In section 4, we discuss an application of the theory which
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Fig. 1. Two cases considered in this paper. In panel (a), we

attempt to confound the source with a noise signal S. In panel

(b) there is both a positive source, which we want to preserve,

and a negative source, which we want to degrade.

considers aspects of the human auditory system. We show

how these can be incorporated into the suggested scheme in

order to add noise to audio signals to reduce their subjective

information content.

2. MINIMISING MUTUAL INFORMATION IN A
GAUSSIAN CHANNEL

In most communication scenarios we want to manipulate the

source distribution P (X) in order to maximise the mutual in-

formation I(X; Y ) between the input X and output Y . Here

we want to change P (S) in order to minimise it. Where

the input Xi is affected by additive noise to give the output

Yi = Xi + Si, this mutual information is given by

I(X; Y ) =
∑

i

1
2

log
(

1 +
Pi

Qi

)
(1)

(see e.g. [1]). If this is subject to the constraint that
∑

i Qi =
Q, where Q is some constant, then we can use a Lagrange
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Fig. 2. Power of counter-signal Qi for different signal

strengths Pi, calculated using (5) with α = 1.
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Fig. 3. An example source distribution, with corresponding

counter-signal distributions for different settings of α.

multiplier to minimise the function

J = I(X; Y ) + λ

(∑
i

Qi − Q

)
(2)

where
∂J

∂Qi
= − Pi

2Qi(Qi + Pi)
+ λ . (3)

Setting this partial derivative to zero and using the substitution

λ = 1
2α gives

Q2
i + QiPi + αPi = 0 , (4)

which has the following solution at the minimum:

Qi =
1
2

√
P 2

i + 4αPi − 1
2
Pi . (5)

We can therefore try different values of α until the power

constraint is satisfied. Clearly the total noise power
∑

i Qi

increases monotonically with α. The relationship is shown

in Figure 2 for some sample values. As Pi becomes large,

Qi → α. In Figure 3 we show the effects of altering α for a

given source distribution. At low α the counter-signal power

is evenly distributed over all channels, whereas at high levels

Qi becomes approximately proportional to
√

Pi.

Note that the channel we examine here is similar to the

“dirty-paper” channel [2] (in our case there is no additional

noise component), for which Costa derived results about in-

formation rates when the masking signal S is known to the

agent encoding the source X . We are interested in the inverse

problem, where a masking agent has information about the

source; however we only assume knowledge of P and not the

value of X .

2.1. Limit in the case of infinite noise power

We can also examine the noise distribution as α tends to in-

finity, where we assume that the power of the noise signal Q
is unbounded. In this case we are interested in the relative

proportions of each Qi,

Qi

Qj
=

−Pi +
√

P 2
i + 4αPi

−Pj +
√

P 2
j + 4αPj

. (6)

It can be seen that as α becomes large the expression ap-

proaches

lim
α→∞

(
Qi

Qj

)
=

√
Pi

Pj
. (7)

To work out the proportion of power for each channel in this

limit, we can see that

lim
α→∞

(
Qi∑
j Qj

)
∝

√
Pi . (8)

We therefore have as a limiting case that the optimal strategy

is to broadcast a counter-signal where the power at each fre-

quency band is proportional to the square of the power in the

signal in that frequency range.

3. DEALING WITH POSITIVE AND NEGATIVE
SIGNALS

Given another signal X+ which we wish to preserve, such

that Yi = X+
i + X−

i + Si, we now want to minimise the

information about X− while maintaining information about

X+. There is a trade-off between these two goals, and differ-

ent solutions might be appropriate depending on the priority

of each. The negative mutual information −I(X+; Y ) can be

used to constrain the solution, and the objective function

J ′ = I(X−; Y ) − βI(X+, Y ) + λ

(∑
i

Qi − Q

)
(9)

associates an additional Lagrange multiplier β with this con-

straint in order to control the trade-off1. We can think of

this as a specification that we want to maintain some fixed

amount of information about X+ in the output, while min-

imising I(X−; Y ). In the Gaussian channel case we have

I(X−; Y ) =
1
2

∑
i

log
(

1 +
P−i

P+
i + Qi

)
(10)

and similarly

I(X+; Y ) =
1
2

∑
i

log
(

1 +
P+

i

P−i + Qi

)
(11)

1Other objective functions are possible, though there are drawbacks to

each. The ratio I(X−i ; Y )/I(X+
i ; Y ) is differentiable, but it is difficult

to find solutions for Qi in this case. We can also consider removing the

constraint associated with λ on the total power in (9).
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Fig. 4. Example solution for the two-source case. Here P+
i =

5 for each of the five channels, P−1:5 = 4, 4.5, 5, 5.5, 6 (from

top to bottom on the plot), β = 0.2, and λ = 0.02. Solutions

for each of the Qi are at the points ∂J′
∂Qi

= 0.

0 0.1 0.2 0.3 0.4 0.5
0

3

6

Qi

β

Fig. 5. The effect of varying β on solutions for Qi, using λ
to keep the total power constant (Q = 20). P+

i and P−i are

the same as for Figure 4, with channels 1 to 5 appearing from

bottom to top.

therefore

∂J ′

∂Qi
=

βP+
i

2ai(P−i + Qi)2
− P−i

2bi(P+
i + Qi)2

+ λ (12)

where ai = 1+ P+
i

P−i +Qi
and bi = 1+ P−i

P+
i +Qi

. In this case we

have no analytical solution as with (5). However, solutions

can be determined numerically by considering each Qi inde-

pendently. Note that when P+
i = 0, this formulation reduces

to the single channel case in section 2.

In general, the solutions for the Qi’s as a function of β,

λ and the P+
i ’s and P−i ’s are quite complex. Solutions for

an example case are shown graphically in Figures 4 and 5.

In Figure 4 we can see what the consequences of reducing λ
would be—effectively to move the function downwards, giv-

ing higher solutions for Qi at ∂J′
∂Qi

= 0. In Figure 5, we can

see the effect of changing β, where λ is adapted to keep the

total noise power constant. When β = 0, the situation is sim-

ilar to the single-source masking case in section 2, P+
i being

treated only as extra noise. As β is increased, the power is

redistributed to channels in which P−i is high (i.e. the chan-

nels where there is less information about the positive source

at the output, being more confounded by the negative source).

4. APPLICATION TO ACOUSTIC SIGNALS

Gaussian channels are often used to model audio signals, where

each channel corresponds to a particular frequency bin. We

Fig. 6. Top: A-weighting transfer function. Bottom: power

spectral densities of a weighted speech signal (solid) and cor-

responding counter-signal (dashed).

therefore now turn our attention to using the methods devel-

oped in the previous sections to minimising the information

in an acoustic signal from the perspective of a human listener.

Because of the structure of the ear, not all frequencies are

perceived equally. It is intuitively clear that where a signal

has high power at a frequency which is undetectable to the ear,

there is no need to broadcast a counter-signal at that frequency

in order to block it. The A-weighting curve [3] can be used

to approximate the subjective loudness of sounds at different

frequencies, where the gain at each frequency is given by

G(f) =
kAf4

(f + 129.4)2(f + 676.7)(f + 4636)(f + 76655)2
(13)

for which the normalising factor is kA ≈ 7.39 × 109. We

assume that each channel i in the source is associated with a

frequency f , and scale accordingly. We can then apply (5)

using the mutual information with respect to the approximate

relative magnitude of nerve impulses in the cochlea2.

Figure 6 (bottom) shows the power spectral densities of

a male speech signal and corresponding counter-signal. The

speech power spectrum is weighted using (13). The counter-

signal distribution was calculated using (5) by adjusting α
such that the variance of the counter-signal is the same as

for the source. It can be seen that the distribution of S is

smoother than the source, where there is an averaging effect

over different frequencies.

In cases such as the application of maintaining privacy

near a spoken conversation, there might be difficulty in work-

ing out the relative magnitude of Pi and Qi. For example, we

2Note that we are modelling the system here as Yf = G(f)Xf + Sf ,

which is a convenient approximation. A more complete analysis would use

the formulation of section 3, but with Yf = G(f)(S+
f + X−f ) + Tf , where

T is background/cochlear noise.
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may not know where a listener is situated, and therefore can-

not calculate what mixture of source and counter-signal they

will receive. If an estimate is impractical then a good strategy

to mask a single source may be to use the limiting case (8).

Where each channel i is associated with a frequency bin,

{Qi} defines a power spectral density. Standard methods can

be used to generate noise from this power spectrum, for ex-

ample the generation of sine waves with random phases.

Note that our method assumes a stationary signal, which

in general (e.g. for speech masking) may not be the case. In

practice it would likely be necessary to resample the distri-

bution of the negative source X− at intervals and adapt the

confounding signal distribution accordingly.

4.1. Other psychoacoustic effects

There are many other pyschoacoustic phenomena which could

also be incorporated into a sound masking scheme. There is a

known masking effect in which loud constant tones mask qui-

eter tones at different frequencies by exciting the same area

of the cochlea. Temporal masking effects could also be ex-

ploited [4]. Another effect which we do not consider here

is that the perception of the loudness of a sound is non-linear.

Each of these effects could be incorporated to quantify a mea-

sure of subjective mutual information. See for example work

on perceptual entropy in [5].

5. RELATION TO PREVIOUS WORK

The problem of reliably transmitting X+ while masking X−

in the “dirty-paper” channel is considered in [6], though for

the case in which the value of X+ is known to the encoder

which produces S (we only assume knowledge of the distri-

bution P+). A related case is that in which X and S are

controlled by two players, where the ‘watermarking game’

emerges [7].

A number of proprietary systems exist, marketed as “white

noise machines”, which perform a similar masking function

to that which we consider here. They typically broadcast

modulated pink noise and are used for example to decrease

distractions in open plan offices (a summary of noise mask-

ing systems for this purpose is given in [8]), outside doctors’

consulting rooms to maintain privacy or to aid sleep. To the

authors’ knowledge, none of these systems adapt to the sig-

nals which are to be masked.

Another related application is radio jamming, which in

practice often involves the use of noise that is white within a

particular frequency range. The difference in that application

to what we consider here is that it is often not possible to

assume that the distribution of the source X is known.

6. DISCUSSION

In this paper we have presented novel results regarding min-

imising mutual information in a Gaussian channel by calcu-

lating the power distribution of an additive counter-signal.

These results are intuitive and simple to implement. We have

shown how to adapt the counter-signal when there is a positive

signal whose coherency we wish to maintain, and suggested

how the theory might be extended when we want to mask the

signal from the perspective of a human listener by considering

psychoacoustic effects.

There are several ways in which this work could be devel-

oped. First, we could extend away from the Gaussian chan-

nel case by investigating the use of parametric models for

the counter-signal in order to make its characteristics closer

to particular sources. For example, the best way to mask a

speech signal is to generate a noise signal with characteristics

close to speech (babble noise). Another extension would be to

consider the case where a fixed competing signal is broadcast

and one wants to decide whether to use power in degrading

the other signal or in broadcasting one’s own signal.

For acoustic signals in particular, rather than reducing the

information of the source we could also try to minimise the

annoyance, which has been quantitively defined in terms of

spectral balance, fluctuation, roughness and tonality [9]. Such

an effect would be useful for example to alleviate the symp-

toms of tinnitus. In this case we would try to broaden the

spectrum of the source to make it similar to stationary pink

noise.
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