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Abstract—We study the problem of stream number selection
in an ad hoc multiple-input multiple-output (MIMO) network,
where there are a number of co-existent MIMO transmitter-
receiver pairs. We assume that there is no channel state infor-
mation (CSI) at the transmitters, and the receivers use single-user
detection. It is shown that the link capacities at high signal-to-
noise ratio (SNR) is mainly limited by the number of degrees of
freedom available at the receiver side. In general the number of
streams per transmitter should not be more than Nr/L when
the interference level is high, where Nr is the number of receive
antennas and L is the number of simultaneous links. When the
interference level is low, the number of streams should be set
equal to the number of transmit antennas.

Index Terms—ad hoc network, MIMO, stream number selec-
tion, capacity, degrees of freedom

I. INTRODUCTION

While the capacity of a point-to-point MIMO system is
relatively well understood, there are fewer results about the
capacity of an ad hoc MIMO network. One reason is that the
problem is distributed in nature.

The capacity of MIMO system can be improved if there are
channel state information (CSI) available at the transmitter.
The capacity of ad hoc network with transmitter side CSI and
single-user detection was investigated in [1]. It was shown
that the capacity of an individual link is a convex function for
fixed covariance matrix of the other users. Feeding back of
CSI decreases the system payload. Also, accurate transmitter
side CSI may not be available if the channel is fast fading.

Multi-user detection is also useful as the receiver can
perform interference cancellation to increase the capacity.
However, it is only helpful under weak or strong interference,
and it does not outperform orthogonal signal when interference
level is comparable to signal level [2].

In this paper, we will discuss the capacity achieved by
stream number selection in an ad hoc MIMO network, where
there is no CSI at the transmitter. We also assume single-user
detection at the receivers. Based on an asymptotic channel
capacity analysis and a piecewise linear approximation to
the capacity, we will show how to select optimal number of
streams to maximize the individual (and overall) capacity.

This paper is organized as follows. In Section II, we present
the system model of a MIMO ad hoc network. The asymptotic
capacity analysis and a piecewise linear approximation to the
capacity is proposed in Section III. We compare the proposed
approximation and the numerical calculations in Section IV,
and conclude the paper in Section V.

The work in this paper was supported in part by Rockwell Collins Inc.,
and in part by NSF Grant No. 0431092.

Notation: boldface uppercase (lowercase) letters denote ma-
trices (vectors). † denotes conjugate transpose.

The identity and all-zero matrices of size M × M are
denoted as IM and 0M , respectively. C is the complex
numbers set. CN (μ,Σ) denotes a complex normal distribution
with mean μ and covariance matrix Σ. tr(·) and det(·) denote
the trace and determinant of a matrix, respectively. diag(·) is
diagonal matrix with elements specified in the argument, or a
block diagonal matrix if the arguments are matrices. A point-
to-point MIMO link with M transmit and N receive antennas
is called an N × M MIMO system.

II. SYSTEM MODEL

Consider an ad hoc wireless network, where each node is
equipped with multiple antennas. Suppose that there are L
effective peer-to-peer communication links in the network,
where each link consists of one transmitter, with Nt antennas,
and one receiver, with Nr antennas. We assume that all the
channels are flat fading, and the received signals are corrupted
by additive white Gaussian noise (AWGN).

A. The general model

The received signal of the lth user can be expressed as

yl =
√

γl,lH l,lxl +
∑L

k=1,k �=l

√
γl,kH l,kxk + nl, (1)

where yl and nl are vectors in CNr×1 denoting the received
signal and additive noise at the lth receiver, respectively;
xl ∈ CNt×1 is the transmitted signal of the lth transmitter,
and

√
γl,kH l,k ∈ CNr×Nt is the MIMO channel from kth

transmitter to lth receiver.
We assume the following: AS1) nk ∼ CN (0, INr

).
AS2) xl ∼ CN (0, Ql), where the covariance matrix Ql has
an eigen-value decomposition as Ql = U lΛlU

†
l . AS3) All

entries of all H l,k matrices are i.i.d. CN (0, 1) distributed.
AS4) H l,l is known perfectly at the lth receiver.

The constants {γl,k : k, l ∈ {1, . . . , L}} control the channel
magnitudes. We define an L × L matrix Γ whose (l, k)th
entry is γl,k. The diagonal entries of Γ control the signal-
to-noise ratios (SNR) and the off-diagonal entries control the
interference-to-noise ratios (INR).

Define H̃ l =[H l,1, . . . ,H l,L], Q̃=diag(Q1, . . . ,QL), Γ̃=
diag(γl,1INt, . . . , γl,LINt) and

H̃−l = [H l,1, . . . ,H l,l−1, H l,l+1, . . .H l,L] (2)

Q̃−l = diag(Q1, . . . ,Ql−1, Ql+1, . . . ,QL) (3)

Γ̃−l =diag(γl,1INt, . . . ,γl,l−1INt, γl,l+1INt, . . . γl,LINt). (4)
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We assume that single user detection is used at each
receiver, which means that the interferences are treated as
noise. The interference plus noise covariance matrix at receiver
l is given by Rl = INr

+ H̃−lΓ̃−lQ̃−lH̃
†

−l. The capacity of
the lth link with single user detection is given by [3], [1]

C(l) = E
{
log2

[
det
(
INr

+ H̃ lΓ̃Q̃H̃
†

l R
−1
l

)]}
(5)

The quantity C(l) is only a mutual information and an achiev-
able rate for the lth link. The Shannon capacity may be larger,
with optimized Ql and multi-user detection. However, for
convenience, we still call C(l) capacity in the following.

The rank of Ql determines the number of streams sent out
simultaneously by the lth transmitter, and is denoted as Bl.
Due to the rotational invariance in the statistical distribution
of the {H l,k} matrices, {U l} do not affect the capacities. The
value of C(l) in (5) does not change if we replace Q̃ and Q̃−l

with Λ̃ and Λ̃−l, respectively, where Λ̃ and Λ̃−l are similarly
defined as Q̃ and Q̃−l. Selecting the number of streams will
affect the capacity, though.

B. Simplified model

Having presented the general system model, we specialize the
model to a simplified case that we will consider in the paper.
In addition to the assumptions we made in the general model,
we further assume that AS5) the number of streams per link
is the same: Bl = B,∀l. AS6) The SNRs and INRs are the
same for the links:

γl,k =

{
γ, if l = k,

η if l �= k,
l, k = 1, 2, . . . , L. (6)

AS7) all the transmitted powers are one: tr(Ql) = 1, ∀l.
AS8) The power is equally allocated among all active streams:
Ql = diag[(1/B)IB,0Nt−B]. AS9) γ � 1.

Under these simplifying assumptions, we would like to
analyze how the number B of streams affects the capacity C(l)

for given Nt, Nr and L, under various signaling conditions
expressed in terms of the SNR γ and INR η.

III. ANALYSIS OF THE CAPACITY

Under the simplified model considered in Section II-B, all the
links have identical capacity. To analyze the links’ capacities,
it is sufficient to analyze one of them. Define

D1 = diag[(γ/B)IB, (η/B)IB(L−1)], (7)

D2 = (η/B)IB(L−1). (8)

Let H1 and H2 denote two random matrices of i.i.d. entries
CN (0, 1) distributed with sizes Nr ×BL and Nr ×B(L−1),
respectively. We can obtain that ∀l, C(l) = C1 − C2, where

Ci = E
{
log2

[
det
(
INr

+ H iDiH
†
i

)]}
, i = 1, 2. (9)

Both C1 and C2 can be viewed as the capacity of some
point-to-point MIMO system. Such single-link MIMO capac-
ity has been relatively well understood, e.g., [4]. Closed-form
expressions for computing C1 and C2 can be derived based
on results in [5], [6]. The results there do not allow for equal
diagonal entries in the D1 and D2, but modifications can be
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Fig. 1. Illusion of asymptotic analysis.

made to deal with such cases. We have used such modified
results in our numerical computations of the capacities.

The numerical expressions, even though providing an exact
value of the capacity, do not offer insights about how the
system should be optimized. In particular, it does not provide
an answer to the question: What should be the optimal number
of streams per link? We will discuss this problem with an
asymptotic analysis.

A. General behavior of C1 and C2

In our system, the number dr of receive degrees of freedom
(DOF) is the number of receive antennas Nr. Viewing each of
C1 and C2 as the capacity of a point-to-point MIMO system,
we can define the number of transmit DOF for Ci, i = 1, 2,
as the number of diagonal entries that are significantly larger
than the remaining ones. And they are denoted as dt and
di, respectively, as the total number of transmit DOF and
the number of DOF from interference. There are three cases
regarding the relationship between γ and η. We will use γ(dB)

and η(dB) to denote the SNR and INR in dB.
1) Strong interference level: η � γ. The entries of D1 con-

taining γ are negligible, so dt = di = B(L−1). Thus, the
slope of C1 and C2 as functions of η(dB) at large η(dB) are
the same and can be determined as min (Nr, B(L − 1)).
If B(L − 1) < Nr, which means dr > di, the receiver
still has additional DOF to support communication, which
leads to a positive difference between C1 and C2. If
B(L − 1) ≥ Nr, there will not be enough DOF at the
receiver, the difference between C1 and C2 goes to zero
as η goes to infinity.

2) Weak interference level: η 	 γ. In this case, dt = B and
di = 0. As a result, C2 is much smaller compared to C1,
and C1 is the capacity of an Nr×B MIMO system, which
depends on γ(dB) linearly for large γ(dB) and the slope is
min(B, Nr).

3) Moderate interference level. In this case, dt = BL, and
di = B(L − 1). There may be a mismatch between the
slope of C1, which is min(Nr, BL), and the slope of C2,
which is min[Nr, B(L − 1)], both viewed as functions of
η(dB). The difference will affect the link capacities C(l).

Fig. 1 depicts the general relationship between C1 and C2 for
fixed SNR γ and varying INR η, as well as their asymptotic
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straight line approximations. We can see the areas A1 and A2

can be viewed as separating the η(dB) axis into three regions,
corresponding to the three previously discussed cases. The
threshold INR levels are denoted as X1 and X2. In the middle
region, the slope of Ci is denoted as Si, i = 1, 2. The slopes S1

and S2 are the same if B(L−1) ≥ Nr, or different, otherwise.
This middle region X2 < η(dB) < X1 is more interesting, as
the capacity C(l) outside it does not change much.

B. Approximation of X2

From Fig. 1, we can see that the approximate value of X2 can
be obtained by the intercept of the asymptotic line, which can
be calculated from the following lemma.

Lemma 1: [7, Equation (15)] In an i.i.d. Rayleigh-faded
N × M MIMO system, the intercept or power offset of the
linear approximation to the capacity for large SNR is

L(N, M) = log2 N+⎛
⎝γ̂ −

N⇑−N⇓∑
l=1

1

l
− N⇑

N⇓

N⇑∑
l=N⇑−N⇓+1

1

l
+ 1

⎞
⎠log2 e (3dB) (10)

where 3dB=10 log10 2, γ̂ ≈ 0.5772 is Euler-Mascheroni
constant, N⇑ = max(M, N), and N⇓ = min(M, N). The
asymptotic slope S in bits/s/Hz/(3dB) is N⇓. �

The equivalent SNR of C2 equals (L−1)η, and hence using
the lemma we have

X2 =(10 log102)L(Nr,B(L−1))−10 log10(L−1) (dB) (11)

C. Approximation of X1:

The value X1 indicates an approximate interference level that
the capacity becomes DOF limited, which could be investi-
gated from the changes of C1’s slope. It is shown that when
the smallest eigenvalue is significantly smaller than 1/SNR, the
corresponding virtual channel is negligible [7], [8], and thus
the slope changes. We will need the following two lemmas.

Lemma 2: (Cauchy-Binet formula) Let A ∈ Cm×n, B ∈
Cn×q and C ∈ Cq×m where m ≤ n and m ≤ q. Then

det(ABC) =
∑

(s)

∑
(p) detA(s) · detB

(s)
(p) · detC(p)

where (s) is an increasingly ordered subset of {1, ..., n} of
size m; (p) is an increasingly ordered subset of {1, . . . , q};
B

(s)
(p) is a submatrix of B where the rows and columns are

those given by (s) and (p), respectively; A(s) is a submatrix
of A with columns given by (s); and C(p) is a submatrix of
C with rows given by (p). �

Lemma 3: [9, Lemma II.1] If A is a random matrix of size
m× n, with i.i.d. entries CN (0, 1), and k ≤ min(m, n), then

E
[
det(A

(p)
(s)(A

†)
(v)
(u))
]
=

{
k!, if (p)=(u), (s)=(v)

0, otherwise
(12)

where (p) and (u) are increasingly ordered subsets of
{1, . . . , m}, and (s) and (v) are increasingly ordered subsets
of {1, . . . , n}, all of size k. �

Using these lemmas, we next evaluate C1 in two cases:

1) Case 1: BL ≥ Nr. Define T = Nr − B(L − 1). Using
Jensen’s inequality, C1 can be approximated as

C1 ≈E
{

log2

[
det
(
H1D1H

†
1

)]}
≤ log2

{
E
[
det
(
H1D1H

†
1

)]}
There are two sub-cases. If BL − B ≥ Nr, then

C1 ≈ log2

{
B∑

i=0

(
B

i

)( γ

B

)i
(

BL − B

Nr − i

)( η

B

)Nr−i

Nr!

}

= log2

{
e0η

Nr

[
1 +

B∑
i=1

ei

(
γ

η

)i
]}

(13)

If BL − B < Nr, then

C1≈log2

⎧⎨
⎩

BL−Nr∑
j=0

(
B

T+j

)( γ

B

)T+j
(
BL−B

j

)(η
B

)Nr−T−j

Nr!

⎫⎬
⎭

= log2

⎧⎨
⎩f0η

BL−B

⎡
⎣1 +

BL−Nr∑
j=1

fjγ
Nr

(
γ

η

)j

⎤
⎦
⎫⎬
⎭ (14)

where ei’s, fj’s, i = 0, . . . , B, j = 0, . . . , BL − Nr are
certain coefficients not related to γ and η. When γ �
η, the terms inside the summations in (13) and (14) are
negligible, so the slope with respect to η(dB) will be equal
to min[B(L−1), Nr]. When η is close to or smaller than γ,
these terms will be comparable to 1 and the corresponding
slope of C1 will be smaller.

2) Case 2: BL < Nr. Using the fact that det(I +AB) =
det(I+BA), we have

C1 =E
{
log2

[
det
(
IBL + D1H

†
1H1

)]}
≈ log2

{
E
[
det
(
D1H

†
1H1

)]}
≈ log2

{( γ

B

)B ( η

B

)BL−B
(

Nr

BL

)
(BL)!

}
(15)

The slope with respect to η(dB) is therefore B(L − 1).
Due to space limitation, detailed derivation is omitted. Based
on the discussion on these two cases and the expressions in
(13) and (14), we approximate X1 as γ(dB).

D. Calculation of C(l) in limit cases

We now calculate the difference between C1 and C2 under
two extreme cases: η(dB) → −∞ and η(dB) → ∞. In the first
case, C2 → 0, and C1 can be evaluated using Lemma 1 as

C1,η(dB)→−∞(γ)	min(Nr, B)
(

γ(dB)

10 log2 10 − L(Nr, B)
)

(16)

where “	” means that the two quantities are asymptotically
the same. Similarly, we also have the capacity of C2 when
η 
 γ as

C2,η�γ(η)	min(Nr, BL−B)( η(dB)

10log210
−L(Nr,BL−B)). (17)

The corresponding capacity of C1 can be approximated as

C1,η�γ(η) 	 min(Nr, BL − B)( η(dB)

10 log2 10 − Lcorr). (18)
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where Lcorr is the power offset for correlated Rayleigh fading
channel [7, Equation (28)], which can also be approximated
through various bounds, e.g. (13), (14) and (15). Subtracting
C2,η�γ(η) from C1,η�γ(η), we have

C
(l)
η�γ 	 min(Nr, BL−B)[L(Nr, BL−B))−Lcorr]. (19)

Base on the former analysis, the capacity of ad hoc MIMO
network can be evaluated through piecewise linear approxi-
mation, shown in Fig. 2, which we summarize as follows:

Proposition 1: The average capacity of ad hoc MIMO net-
work satisfying the assumption AS1)– AS9) can be evaluated
through the following piecewise linear approximation:

C(l) ≈

⎧⎪⎨
⎪⎩

C1,η(dB)→−∞, if η ≤ X2

C
(l)
η�γ if η ≥ X1

η(dB)−X2

X1−X2
(C

(l)
η�γ − C1,η(dB)→−∞) otherwise

where X2 is given in (11), X1 = γ(dB); and C1,η(dB)→−∞,
C2,η�γ(η) and C1,η�γ(η) are as given in (16)–(18).

IV. SIMULATION AND DISCUSSION

To evaluate our analysis result, we show the comparison
between the piecewise linear approximation and the exact
capacity curves in Fig. 3. The exact curves were obtained using
methods in [5], [6], modified to allow for equal values on the
diagonals of D1 and D2. The received SNR γ is 30dB. We
used Nt = Nr = L = 4.

The capacity shows different characteristics when the stream
number increases, as we discussed. When η > γ, the capacity
tends to zero if the number of receive DOF Nr is less than
the number of interference streams B(L − 1), otherwise it
tends to a positive constant. Thus the stream number B in
this region should not be larger than �Nr/L�. Notice that if
B = �Nr/(L−1)� and it is larger than zero, C(l) is not zero.
However, such B is not an optimal choice as the DOF is not
enough to recover all the data streams from the interference
streams. When η < X2, the interference is negligible. We
should use as many streams as possible, namely B = Nt

streams in this case [4]. As to the middle part, the capacity
can be approximated as a linear function. In the left part of
this region, we still favor large number of streams, but the
performance becomes worse and smaller number of streams
is preferred as INR increases. The transition INR for stream
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number change from Nt to �Nr/L� can be obtained either
through analytical curve or piecewise linear approximation.
And the receiver will feedback the optimal number of streams
to the transmitter. In Fig. 3, an accurate estimate of criti-
cal interference level from numerical calculation is η=18dB,
whereas the piecewise linear approximation gives 20dB.

Finally, we point out that the analytical analysis will suffer
from numerical stability when BL is very large [5], thus the
proposed piecewise linear method will be good in analyzing
the capacity of a large ad hoc network and can be used to
determine the optimal stream number.

V. CONCLUSIONS

The capacity of a MIMO ad hoc system using stream number
selection is investigated. We assumed that there is no CSI
at the transmitters, and single-user detectors. We proposed a
piecewise linear approximation to the link capacities in weak,
strong, and moderate interference regimes. The capacity-
transition points can be determined through our piecewise lin-
ear approximation. Our results provided rules for determining
the optimal number of streams at various interference levels.
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