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ABSTRACT 

 
We consider estimation of a set of tent-map chaotic 
sequences. These sequences are obtained by iterating a one 
dimensional chaotic function in the (-1,1) domain. We 
demonstrate how to construct a set of n sequences, in which 
information in the form of n arbitrary samples in the (-1,1) 
domain is embedded. Additionally the signs of all sequences 
jointly form a valid digital codeword. Each sequence in the 
set consists of m elements, hence the set of sequences is 
equivalent to a rate 1/m analog error correcting-code. We 
present performance in terms of coding gain when maximum 
likelihood (ML) and minimum-mean-square-error (MMSE) 
estimation approaches are employed.  
 
Index Terms— Chaos, Error correction coding, Estimation, 
Communication system signaling 
 

1. INTRODUCTION 
 
Chaotic signals have received much attention in the past 
years. Several estimation techniques for discrete-time 
chaotic signals immersed in additive white Gaussian noise 
have been proposed. These include maximum likelihood 
(ML) [1-4], Bayesian [5] and iterative techniques such as 
variants of expectation maximization [6].   
All of these methods exhibit a threshold effect, which has 
been thoroughly investigated from an information theoretic 
point of view in [7] and a bound on the threshold signal to 
noise ratio (SNR) has been derived. 
We shall focus on symmetric tent-map chaotic sequences, 
generated by iterating the function: 

z 1 2 z .           (1) 

An ensemble of samples, uniformly distributed in (-1,1), 
preserves its distribution when this tent function is applied to 
it. We shall therefore assume this distribution.  
ML estimation for tent-map sequences was presented in [1] 
and MMSE estimation was presented in [5]. The ML 
estimation approach was shown to have a linear complexity 
with respect to the sequence length, and since it possesses an 
invariance property, it was sufficient to estimate the initial 
value, from which estimates of other elements in the 
sequence could be obtained.  

This is not true for MMSE estimation. Thus, MMSE 
estimation of each element in the sequence individually, 
does not form a valid sequence when concatenated. 
Additionally, the complexity is exponential. We extend 
previously published work by deriving a closed form 
expression for MMSE estimation of all the elements in the 
sequence.  
Even though MMSE estimation provides better estimation 
with respect to the mean squared error (MSE), both ML and 
MMSE approaches posses the same threshold. In ML 
estimation the threshold is a consequence of errors in 
estimating the signs of the elements, implying that if we 
limited ourselves to estimating a set of sequences whose 
signs jointly form a valid binary codeword the threshold 
could be extended to lower SNR values by decoding them 
during the estimation process. Once the signs are 
determined, ML and MMSE estimations can be carried out 
yielding better performance.  
Coding of analog signals with chaotic sequences was 
initially proposed in [8], and signs coding in this context was 
proposed later in [9]. However, the combination with 
MMSE estimation is presented here for the first time.    
The outline of this contribution is as follows. Section 2 
presents the relevant background on symmetric tent 
sequences. Section 3 briefly reviews ML estimation and 
section 4 presents MMSE estimation in a closed form. 
Section 5 describes how signs coding may be applied. 
Section 6 discusses log-likelihood-ratio (LLR) calculation. 
Simulation results are presented in section 7, and finally, we 
conclude our work in section 8.  
 

2. SYMMETRIC TENT SEQUENCES 
 
Consider a length m symmetric tent sequence, kz , where 

k=0,1..m-1. The sign of element k is denoted by ks . Given 

an initial value 0z and the signs vector s , we can express 

element k as a linear function of 0z : 

k0k0
k

k bzazz ,          (2) 

where the coefficients are obtained in a recursive manner: 
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For length-m symmetric tent-map sequences there are 

exactly m2  possible signs-vectors. We shall therefore 
enumerate them using variable p. We shall use the notation 

ps for denoting signs-vector p. Let ppp , denote a 

section of (-1,1) which is associated with ps . The 

association is with respect to the signs-vectors of tent-map 
sequences with initial values in this section as expressed in 
the following formula: 

pn 1
0 p 0 0 0z : sign z , z ,... z s .       (4) 

The inverse tent function may be easily expressed using the 
signs vector as well: 
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3. MAXIMUM LIKELIHOOD ESTIMATION 

 
We consider estimation of a sequence kz , from its samples 

immersed in white Gaussian noise: 

kkk vzr .            (6) 

The variance of the noise samples is denoted by 2
v . In [1] 

it was shown that ML estimation consists of two steps: 
filtering and smoothing. During the filtering process, the 
signs are estimated. The smoothing process is performed by 
back-propagation (5) using the estimated signs.  
The MSE of the filtered samples was shown to approach 

2
v0.75  as k, the index of the sample increases. The MSE 

of the smoothed samples was shown to depend strongly on 
the sign error probability. We denote the SNR, by: 

 2 2 2
z v v1 3 .          (7) 

It was shown that the sign error probability decreases very 
slowly as SNR increases and is approximately given by [8]: 

1
s 22P .                       (8) 

The resulting MSE of the ML estimation was also derived in 
[8] and was given by: 
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The first term in the square parentheses decreases 
exponentially with the sequence length m. However, the 
second term sets a "noise floor" for the estimation since it 
converges to a value proportional to the sign error 
probability as the sequence length increases. These 
conclusions motivate generating sequences with coded signs. 
  

4. MMSE ESTIMATION 
 
For calculating the MMSE estimate of element kz  we 

express it as a function of 0z  according to (2), and obtain its 

estimate by calculating an expectation of 0
k z  with 

respect to the a-posterior distribution of 0z  given the 

received vector. 
1
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The conditional distribution r|zf 0r|z0
 may be expressed 

as a function of other distributions using Bayes formula as 
follows: 
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These other distributions are simpler to evaluate: 
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Combining these distributions we end up with: 

 
1

1

00z|r

1

1

00
k

0z|r

0
k

MMSE,k

dzz|rf

dzzz|rf

r|zEẑ
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Even though (15) appears to be simple, the integrals involve 

a nonlinear function of the expression 0
1m z  as evident 

from (12). This expression is a piece-wise linear function 

with m2  sections, hence, the integrals have to be evaluated 
m2  times. The complexity for MMSE estimation is thus an 

exponential function of m, while for ML it was shown to be 
a linear function of m.  
Expression (12) may be simplified using the relation 
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where the coefficients A,B and C are related to the 
coefficients ka and kb of equation (2) and to the noisy 

samples kr  in the following way: 
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Notice that these coefficients depend on the signs-vector of 
the sequence through the coefficients ka  and kb . Following 

the definition of p  in (4), we shall use the notation 

pp B,A  and pC  for designating these coefficients when the 

integration in (15) is performed for 0 pz . 

Using these notations and some algebraic manipulations we 
arrive at the following expression for the estimator. 

p
p

p,2

p
p,2

p

p
p,1p,k

p,kMMSE,k
I

I
A2

B
Ia
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where Q(x) is defined as an integral from x to infinity of a 
unity variance zero mean Gaussian distribution. The last two 
expressions depend on the received vector r through pB  

and pC  as evident from (17). Clearly they depend on p. 

However, they are independent of k, the index of the 
estimated element. Hence, once p,1I  and p,2I  are 

calculated, the MMSE estimation of all the elements in the 
sequence are obtained through equation (18).  
 

5. CHAOTIC SEQUENCES WITH CODED SIGNS 
 
We wish to generate a set of symmetric tent sequences based 
on random samples distributed in (-1,1). Additionally the 
signs of the set of sequences should jointly form a valid 
codeword. We review here the method proposed in [9].  
We begin with n samples taken from the domain (-1,1). We 
perform q iterations to each of the samples. The signs of the 
sequences are coded using some systematic digital code. The 
obtained parity bits are then taken as signs for (m-q-1) 
backwards iterations from each of the initial n samples. 
Thus, each sample is iterated forward and backwards and the 
set of all signs forms a valid codeword.  
  

6. LOG LIKELIHOOD RATIO OF THE SIGNS 
 
Decoding the signs of the chaotic sequences requires 
calculation of their LLRs. The LLR of element k of 
sequence j is formally defined as: 

r|0zPr

r|0zPr
lnLLR

k,j

k,j
k,j        (21) 

where r denotes the mn received samples. While exact 

calculation is complicated, we can approximate it. One 
alternative is to consider only received samples which 

correspond to sequence j. The LLR expression is then 
simplified to  
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The last equation implies that the expression of p,2I  has to 

be calculated for all p sections. If element k of a sequence 
starting in p , e.g., at PP2

1 , is positive,  p,2I  is added 

to the nominator, otherwise, it is added to the denominator. 
This approximation is related to MMSE estimation, and 
therefore, named after it. The calculation has an exponential 
complexity with respect to the sequences length. The 
calculation can be further simplified by assuming knowledge 
of the magnitudes. In practice, the magnitudes can be 
estimated with the linear-complexity ML approach. In this 
case we obtain the following expression for the LLR [9]: 
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yẑ2
LLR         (23) 

where k,jy  denotes a filtered sample corresponding to k,jz  

with an MSE of 2
y , and k,jẑ  denotes its ML estimated 

magnitude. This approach is related to the ML estimation 
and therefore named after it.  
Finally, using the approximate LLRs (23) enables decoding 
the received signs. The resulting sign error probability is 
generally significantly lower than the one used when 
magnitudes were initially estimated. Hence, magnitude 
estimation can be improved using the decoded signs, which 
in turn, provides better LLRs. Notice that this iterative 
approach exploits information from all the sequences in the 
set during the decoding process overcoming the limitation 
we had so far.  
Once signs are decoded, both ML and MMSE sequence 
estimation are significantly simplified. An ML estimation 
method was proposed in [4]. The method examines all 
possible sign vectors, and then, selects the one which 
provides the lowest MSE. This method is suitable here with 
a slight twist in the sense that only one signs vector is 
considered.  
For the MMSE estimation (18) the summation over p is 
replaced with selecting only one section which corresponds 
to the decoded signs vector. Notice that an estimate of 
element k in a sequence is now directly related to the 
estimate of the first element, as shown in the following 
equations. 
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7. SIMULATION RESULTS 
 
We considered estimation of a set of 250 sequences, each 
composed of 8 elements. We used a rate 0.5 irregular LDPC 
code for generating their signs, i.e., 3 forward iterations and 
4 backwards iterations were performed on each of the 250 
source samples.  
Figure 1 presents the obtained sign error probability when 
different approaches for LLR calculation are employed. The 
ML LLR exhibits the worst performance due to magnitude 
inaccuracies. A single iteration in the calculation provides 
some improvement; however, the MMSE approach provides 
the lowest error floor.  
Figure 2 presents the coding gain, which is the ratio between 
the additive noise variance and the MSE of the estimated 
source samples, normalized by the bandwidth expansion, m. 
We present several combinations of LLR estimation 
techniques and sequence estimation approaches.   
As expected, MMSE sequence estimation exhibits best 
asymptotic performance. However, the iterative LLR 
calculation approach, when combined with MMSE 
estimation is worth noting for having the lowest threshold 
SNR, while maintaining linear complexity with respect to 
the sequences length.  
 

8. CONCLUSIONS 
 
We have introduced the concept of coding of a set of analog 
samples with chaotic sequences whose signs jointly form a 
binary codeword. We have presented a closed form MMSE 
estimator for the sequences, and discussed several options 
for LLR calculations.  
Further work may include different chaotic sequences and 
more complex noise models.  
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