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ABSTRACT

This paper considers a coding scheme for data transmission over era-
sure channels which is also known as multiple description coding.
The LMMSE prefilter method of Romano [1] is reviewed and gen-
eralized to allow three different operational modes of the prefilter.
They include the possibility to decrease or increase the number of
descriptions to be transmitted. We derive explicitly the Hessian ma-
trix for an efficient calculation of the prefilter. We also study the
properties of the distortion measure theoretically.

Index Terms— multiple description coding, transform
coding, correlating transform

1. INTRODUCTION

Multiple description coding (MDC) is often linked with a packet
oriented transmission scheme like the internet. In the internet, some
packets (i.e. descriptions) might get lost. This may e.g. be the case
for a congested internet-router where buffers overflow. The problem
at the receiver is now to obtain an estimate of the original informa-
tion from the subset of available packets.

But multiple description coding also appears to be a valid tool
for an incremental specification of signals. In the Collaborative Re-
search Center SFB 732 [2], methods for incremental specification
of speech are investigated. One feature that one would expect from
such an incremental scheme is that subsets of different descriptions
of the speech signal can be arbitrarily chosen and help to restore a
better representation of the original speech sample.

A good overview of current techniques for multiple description
coding can be found in [3, 4]. Multiple description coding can be
achieved by different means, e.g. using a transform [1, 5, 6] or vector
quantization methods [7, 8].

In this paper we investigate a correlating transform which was
introduced in the inspiring paper [1]. After a short introduction into
the MDC problem, we will further generalize [1] in section 3. This
generalization allows us to handle the case that more descriptions
are used for transmission after the correlating transform. Thus, our
scheme provides the possibility of a redundancy coding. This op-
erational mode of a MDC correlating transform is very interesting
in the case that the channel offers enough bandwidth. It allows us
to further minimize the distortion by transmitting redundant descrip-
tions. At the end of section 3, we summarize all possible operational
modes. Section 4 finally is a collection of characteristics that the
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distortion measure inhibits. Its Hessian matrix is derived which is
useful for solving the optimization problem. A Matlab Toolbox with
an implementation of our proposed algorithm can be found in [9].

Following notation is used throughout this paper: x denotes a
vector, X a matrix and I the identity matrix.

2. THE ERASURE CHANNEL AND THE OPTIMAL
CORRELATING TRANSFORM

Fig. 1 shows the considered system. The real-valued, zero-mean
random vector x ∈ R

K is to be transmitted over an erasure channel
that might randomly erase elements of x and therefore the received
vector z ∈ R

M might be of smaller dimension than x. At the re-
ceiver, a LMMSE estimator is used to obtain a reconstructed x̂ of
the original transmitted vector x. Instead of transmitting x directly,
we use a linear precoding matrix T ∈ R

K×L to obtain a more robust
representation y ∈ R

L which allows for a better reconstruction of x

after the transmission over the erasure channel.
We assume in this paper that unerased descriptions are received

without distortion. Though the quantization of descriptions as ana-
lyzed in [1] is an important issue for practical systems, it will not
be considered in this paper due to limited space. Its effect for the
generalized optimal correlating transform will be studied in a future
work.

The erasure process of the channel is described by the erasure
matrix Pe which is composed of the unit row vectors of the surviving
descriptions, i.e. it has zero columns for the descriptions that do not
survive. A further assumption is that Pe is known to the receiver,
i.e. it knows which descriptions got lost during transmission.

In the case that there is no precoding (i.e. T = I), the linear
MMSE estimation of x from the received vector z is clearly (see e.g.
[10])

x̂ = RP
T
e (PeRP

T
e )−1

z (1)

where we used R = E[x xT ]. The corresponding correlation matrix
of the error ε = x− x̂ is

Rε = R−RP
T
e (PeRP

T
e )−1

PeR (2)

and we can define a distortion De as

De = E
ˆ
‖ε‖2

˜
= tr {Rε} (3)

Eq. (1) allows us to estimate the lost descriptions of x. However,
this is only a reaction of the receiver to a particular erasing matrix
Pe. It is obvious that we can decrease (3) if we use a precoding. In
[1], Romano dealt with this problem. He introduced a transform T

before the data vector x is transmitted over the erasure channel. The
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Fig. 1. Erasure Channel

idea of this transform is to distribute the important information of x

over all elements of y. Since different erasure constellations Pe are
possible, T has to be designed to consider all of them.

The encoding and decoding equations with a prefilter T ∈ R
K×L

and L ≤ K are given by

y = T
T
x (4)

x̂ = Vez = RTP
T
e

“
PeT

T
RTP

T
e

”
−1

z (5)

The optimal transform T is found by minimizing the overall distor-
tion D which takes into account all possible erasure constellations
Pe by calculating a weighted sum of the individual distortions De

D =

EX
e=1

weDe =

EX
e=1

we

»
tr (R)−

tr

„
RTP

T
e

“
PeT

T
RTP

T
e

”
−1

PeT
T
R

«–
. (6)

E is the total number of error constellations and we the weighting of
a particular error constellation. we can e.g. be chosen to be the prob-
ability that the error constellation Pe occurs. As a simple model, we
could e.g. assume that each description is safely transmitted with
the probability p. Therefore, the probability that one specific error
constellation Pe with L −M erased descriptions occurs is merely
we = pM (1 − p)L−M and the total number of error constellations
is E = 2L.

If E = 1, i.e. only one Pe is possible and we know which
descriptions are erased, then the solution of minimizing (6) is well
known. The descriptions have to contain the coordinates of x along
the eigenvectors of R with the largest eigenvalues. This corresponds
to the Karhunen-Loeve transform which is the optimal linear trans-
form T in this case.

For E > 1, no closed-form solution is known and Romano pro-
posed a gradient search to seek for the optimal transform T in [1].

3. A GENERALIZED CORRELATING TRANSFORM

In this section, we will generalize the precoding in (4). This gener-
alization will allow us to also have more descriptions after the pre-
coding, i.e. L > K. The basic idea is to transmit redundant descrip-
tions which are more unlikely to be erased altogether and therefore
more descriptions remain available to compute a better estimate x̂

at the expense of an increased bandwidth. Note, that T has now
more columns than rows. Such a set of redundant vectors is called
a frame. Frames are also used for multiple description coding, see
e.g. [11]. Solving for the minimum of (6) will provide us with the
optimal frame for our problem that gives the minimal distortion.

The only difficulty of having more descriptions, i.e. L > K,
is a possible rank deficient correlation matrix of z if the redundancy
introduced by the transform T is not completely erased by the chan-
nel. As an example, let K = 2 and L = 4, i.e. the prefilter
adds two redundant descriptions. Assume further that the channel
transmits all descriptions, i.e. Pe = I. The problem now is that
PeT

T
RTP

T
e = T

T
RT ∈ R

4×4 has at most a rank of two and can
therefore not be inverted.

We propose the following selection process to solve this prob-
lem: As we seek for the optimal T by an iterative method like gradi-
ent search in [1] or Newton method, we determine at each iteration
the rank of TP

T
e which corresponds to the number of non-redundant

descriptions. If rank{TP
T
e } < M , i.e. E[z zT ] will be rank defi-

cient, we delete additional rows of Pe resulting in P̃e ∈ R
M̃×L

(M̃ < M) such that rank{TP̃
T
e } = M̃ . This corresponds to delet-

ing redundant descriptions in z such that the vector of non-redundant
transmitted descriptions has a full rank correlation matrix. The ques-
tion is which rows of Pe should be deleted. We systematically try all
possible combinations of row vectors of Pe and use that combina-
tion with the smallest condition number of TP̃

T
e . This also ensures

that the calculation is numerically robust. The generalized distortion
function therefore is

D =
EX

e=1

we

»
tr (R)−

tr

„
RTP̃

T
e

“
P̃eT

T
RTP̃

T
e

”
−1

P̃eT
T
R

«–
. (7)

P̃e includes both, the erasure process of the channel and the selec-
tion process above to handle redundant descriptions.

Note, that if we had not neglected the influence of the noise (e.g.
because of quantization), then instead of PeT

T
RTP

T
e we would

have to consider the full rank matrix PeT
T
RTP

T
e + Rnoise. In this

case, the above procedure is not necessary and all descriptions will
help to improve the estimation of the original x.

In total, we can now distinguish between three different opera-
tional modes of the correlating transform T ∈ R

K×L.

K > L: The vector y that is transmitted has a smaller number of
elements, i.e. the prefilter T performs a compression. Addi-
tionally, it will try to minimize the distortion D and therefore
T will mainly consist of a combination of the eigenvectors of
R with large eigenvalues.

K = L: In this case, y and x have the same dimension and we im-
prove the robustness of the transmission against the erasure
channel by the precoding T.

K < L: The number of descriptions increases after the precoding.
This corresponds to a redundancy coding, where we allow
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the transmitter to use more descriptions to safely transmit the
information to the receiver.

4. PROPERTIES OF THE OPTIMIZATION PROBLEM

Below, we study the generalized correlating transform theoretically.
In particular, we give four properties of the distortion D in (7). Es-
pecially the knowledge of the Hessian matrix will help us to find the
optimal transform T iteratively.

4.1. Gradient and Hessian of D

Property 1: Eq. (8) and (9) on the next page give the elements of
the gradient vector and the Hessian matrix of D where W = VeP̃e

and Ve is the optimum reconstruction matrix in (5). ∂α denotes the
derivative with respect to α and ∂αβ is the second derivative with
respect to α and β.

Proof: Note, that the gradient vector (8) was already stated in
[1]. Because of space limitations, we omit a detailed derivation of
(9) in this paper. �

The knowledge of the Hessian matrix allows us to use more
complex optimization methods, e.g. the Newton method, to deter-
mine the optimal T that minimizes (7).

We can simplify (8) and (9) further if α and β denote two ele-
ments of T at the positions (i, j) and (k, l) by using

∂αT = ∂ijT = J
ij (10a)

∂αβT = ∂ij,klT = 0. (10b)

J
ij ∈ R

K×L is a single entry matrix which is zero everywhere ex-
cept for a ”1” at the position (i, j).

4.2. Stationary points of D

Property 2: Each transform T = U with L ≤ K, where the
columns of U contain any distinctive eigenvectors of R = E[x xT ],
is a stationary point of the distortion (7).

Proof: We consider only one error constellation P̃e in (8), i.e.
one summand. For the special case that T = U, we obtain after
some calculations

W = RUP̃
T
e

“
P̃eU

T
RUP̃

T
e

”
−1

P̃e

= UΛP̃
T
e

“
P̃eΛP̃

T
e

”
−1

P̃e

= UP̃
T
e Λ̃Λ̃

−1
P̃e = UP̃

T
e P̃e (11)

where Λ is a diagonal matrix with the eigenvalues of R to the eigen-
vectors U and Λ̃ = P̃eΛP̃

T
e . In the appendix, we show that ΛP̃

T
e =

P̃
T
e Λ̃ holds. This was used in the last line of (11). Therefore, (8)

can be rewritten as

∂D

∂α

=2

EX
e=1

we tr
n
P̃

T
e P̃eU

T
“
UP̃

T
e P̃eU

T−I

”
R∂αT|T=U

o

= 2
EX

e=1

we tr {0} = 0

as U
T
U = I and P̃eP̃

T
e = I. �

Property 2 is even valid for the case that T contains eigenvectors
of R several times. The selection process introduced in section 3
will erase the duplicated eigenvectors and UP̃

T
e will only contain

distinctive eigenvectors.

4.3. Normalization of T

Property 3: Let N = diag(n11, . . . , nLL) ∈ R
L×L be a diagonal

matrix and nii �= 0. Then TN has the same distortion D as T, i.e.
(7) is invariant to a scaling of the columns of T.

Proof: Analog to the proof of property 2, we consider only one
term in (7)

RTNP̃
T
e

“
P̃eNT

T
RTNP̃

T
e

”
−1

P̃eNT
T
R

= RTP̃
T
e ÑÑ

−1
“
P̃eT

T
RTP̃

T
e

”
−1

Ñ
−1

ÑP̃eT
T
R

= RTP̃
T
e

“
P̃eT

T
RTP̃

T
e

”
−1

P̃eT
T
R (12)

where Ñ = P̃eNP̃
T
e ∈ R

M×M . Here, we again use the identity
NP̃

T
e = P̃

T
e Ñ from the appendix. �

From the property above we see that each column vector of T

can be normalized to one. We can therefore reduce the computa-
tional complexity by constraining T to a special structure, e.g. set-
ting the norm of each column vector to one. We do this by using
spherical coordinates [12]. The jth column of T using spherical
coordinates is

2
6666666664

cos φ1j

cos φ2j sin φ1j

...

cos φ(K−1)j

K−2Q
i=1

sin φij

K−1Q
i=1

sin φij

3
7777777775

(13)

where 0 ≤ φij ≤ π for i = 1, . . . , K − 2 and 0 ≤ φ(K−1)j < 2π.
By using spherical coordinates, the total number of unknowns is re-
duced from KL to (K − 1)L. A drawback of spherical coordinates
is that ∂αT has more than one non-zero entry and ∂αβT is not al-
ways zero in comparison to (10) because α and β now denote the
angles φij . This is the reason why computer simulations show that
using spherical coordinates does not reduce the computation time
considerably.

4.4. Symmetry of D

Property 4: Let D1,D2 = diag(±1, . . . ,±1) be two diagonal ma-
trices with only ”1” or ”−1” on the main diagonal. If U is the square
matrix of all eigenvectors of R with U

T
U = I, then replacing T

with UD1U
T
TD2 has no influence on (7).

Proof: First, we would like to point out that a right-multiplication
of T by D2 is only a special case of property 3. Therefore, we will
restrict to the left-multiplication of T by UD1U

T . One term in (7)
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∂D

∂α

= 2
EX

e=1

we tr
n
W

T
“
WT

T − I

”
R∂αT

o
(8)

∂2D

∂α∂β

= 2
EX

e=1

we tr

j“
W

T (∂αTW
T + W(∂αT)T )− P̃

T
e (P̃eT

T
RTP̃

T
e )−1

P̃e(∂αT)T
R(I−TW

T )
”

×
“
I−WT

T
”

R∂βT−W
T (I−WT

T )R
“
∂αβT− ∂αTW

T
∂βT

”ff
(9)

is then

tr
˘
RUD1U

T
TP̃

T
e

“
P̃eT

T
UD1U

T
RUD1U

T
TP̃

T
e

”
−1

× P̃eT
T
UD1U

T
R

¯
= tr

˘
UΛD1U

T
TP̃

T
e

“
P̃eT

T
UD1ΛD1U

T
TP̃

T
e

”
−1

× P̃eT
T
UD1ΛU

T
¯

= tr
˘
UD1ΛΛD1U

T
TP̃

T
e

“
P̃eT

T
RTP̃

T
e

”
−1

P̃eT
T

¯

= tr
˘
UΛΛU

T
TP̃

T
e

“
P̃eT

T
RTP̃

T
e

”
−1

P̃eT
T

¯

= tr
˘
RTP̃

T
e

“
P̃eT

T
RTP̃

T
e

”
−1

P̃eT
T
R

¯
(14)

In the third line, we used the cyclic shift property tr{AB} = tr{BA}
with B = UD1ΛU

T . Additionally, D1ΛD1 = Λ holds as D1D1 =
I and D1 and Λ are diagonal matrices. For the last line in (14),
we used the identity UΛΛU

T = UΛU
T
UΛU

T = RR and
tr{AB} = tr{BA} with A = R once again. �

Property 4 can be easily interpreted. The right-multiplication
with D2 changes the sign of some columns of T so that they will
point to the opposite direction. As we are transmitting the coor-
dinates along the columns of T, only their direction is important
but not their orientation. The interpretation of left-multiplying by
UD1U

T is as follows: First, we do a coordinate transform of T

along the eigenvectors of R by multiplying with U
T . Afterwards,

we change the sign of some rows by D1. Finally, we reverse the pre-
vious coordinate transform by U. This invariance shows that there
is a mirror symmetry of (7) along the eigenvectors of R.

5. CONCLUSIONS

A generalized and optimum multiple description coding is consid-
ered in this paper. It allows redundant descriptions to be transmitted
which offer an improved robustness against erasure channels. Sev-
eral properties of the distortion measure (7) are proved which help
to understand the function of the prefilter. Especially the knowledge
of the Hessian matrix (9) allows to efficiently find a solution of the
optimization problem.

6. APPENDIX

Let D ∈ R
L×L be an arbitrary diagonal matrix. We will show in

this appendix that the identity DP̃
T
e = P̃

T
e D̃ holds, where D̃ =

P̃eDP̃
T
e ∈ R

M̃×M̃ . Left-multiplying D̃ = P̃eDP̃
T
e by P̃

T
e yields

P̃
T
e D̃ = P̃

T
e P̃eDP̃

T
e = DP̃

T
e P̃eP̃

T
e = DP̃

T
e (15)

as P̃
T
e P̃e and D are diagonal matrices and P̃eP̃

T
e = I.
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