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ABSTRACT

In this paper, we focus on the design of distributed source
codes that can achieve any point in the Slepian-Wolf (SW)
region and at the same time adapt to any correlation between
the sources. A practical solution based on punctured accu-
mulated LDPC codes extended to the non asymmetric case
is described. The approach allows flexible rate allocation to
the two sources with a gap of 0.0677 bits with respect to the
minimum achievable rate.

Index Terms— Data compression, source coding, chan-
nel coding, error correction coding, block codes.

1. INTRODUCTION

Distributed source coding (DSC) refers to the problem of com-
pressing correlated sources. DSC finds its foundation in the
seminal Slepian-Wolf [1] and Wyner-Ziv [2] theorems. In
the sequel, we consider only the Slepian-Wolf lossless coding
problem of two correlated binary sources X and Y . If there
is cooperation between the coders of X and Y , the problem
reduces to the single user Shannon’s source coding problem
and the rates RX and RY achievable for the two sources ver-
ify the sum rate condition RX + RY ≥ H(X,Y ). If there
is no cooperation between the two coders, Slepian and Wolf
(SW) have shown [1] that the sum rate condition remains
RX + RY ≥ H(X,Y ) with the constraints RX ≥ H(X|Y ),
RY ≥ H(Y |X), (see Fig. 1) provided that the two sources
are decoded jointly.
DSC has gained increasing interest recently for a range of

applications such as wireless sensor networks (WSN), video
compression, loss resilient video transmission, or analog tele-
vision upgrade using a digital side channel. First attempts to
construct DSC codes have considered the so-called asymmet-
ricDSC problem, or the problem of coding with side informa-
tion, corresponding to the corner points (A andB in Fig. 1) of
the SW rate region. These constructions are motivated by the
optimality of capacity-achieving channel codes for the asym-
metric DSC problem [2]. The statistical dependence between
the two sources is modeled as a virtual correlation channel
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analogous to a binary symmetric channel (BSC) defined by a
cross-over probability p = P(X �= Y ). The source Y (called
the side information) is thus regarded as a noisy version ofX
(called the main signal). The side information Y is transmit-
ted at full rate (i.e. RY = H(Y )), whereas the other source is
compressed either by sending a syndrome or parity bits. The
first practical asymmetric Slepian-Wolf coding solution called
DIstributed Source Coding Using Syndromes (DISCUS) has
been proposed in [3]. The transmission of a syndrome (or
coset index) instead of the complete codeword yields com-
pression of the information. The receiver decodes the value
ofX by choosing the codeword in the given coset that is clos-
est in terms of Hamming distance to the binary representation
of the symbols of the source that serves as side information
Y . To approach the Slepian-Wolf bounds more closely, effi-
cient codes such as Turbo Codes [4][5][6][7] and LDPC codes
[8][9] have also been considered.
Code design has then been recently extended to the case

where both sources are compressed, in order to reach any
point of the segment between A and B, for a given cross-
over probability p. We refer to this set-up as non asymmet-
ric DSC and to symmetric DSC, when both sources are com-
pressed at the same rate. Both syndrome-based approaches
(symmetric DSC [10][11], and [12][13] for non asymmetric)
and parity-based approaches (symmetric [4], non asymmetric
[14][7]) have been considered. Syndrome-based approaches
are known to be optimal, however maybe less amenable to
rate adaptation. Yet, rate-adaptive symmetric codes may be
beneficial for applications such as multi-view light field cod-
ing [11] or for joint optimization of the rate and power of
transmission in a sensor network application [15]. For ex-
ample, in a WSN, spatially distributed sensors gather data
and send them to a common center (or sink). It is shown
in [15] that the optimal rate allocation depends on the trans-
mission conditions and can therefore be any point in the SW
region. It is therefore of interest to construct DSC codes that
can achieve any point in the SW region. Moreover to meet the
low cost constraint, a single sensor must be designed that can
handle any correlation between the sources.
Here, we focus on the design of a single DSC code that

achieves any point in the SW region but also adapts to any cor-
relation between the sources, hence the name rate-adaptive
non asymmetric codes. We consider a punctured syndrome-
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based approach based on accumulated LDPC codes [16] which
are thus extended the non asymmetric case. Syndrome and
systematic bits are transmitted for both sources in a respective
amount depending on the rate allocated to the two sources.
The adaptation of the rate to varying correlation is performed
via a puncturing of the syndrome information.

2. SLEPIAN-WOLF CODING

2.1. Theoretical results

Let X and Y be two binary correlated memoryless sources.
The minimum achievable rate for lossless compression of the
two sources X and Y is given by the joint entropy H(X,Y ).
To approach this rate bound, practical systems encode and
decode the two sources jointly. However, Slepian and Wolf
have established in 1973 [1] that this lossless compression
rate bound could also be approached with a vanishing error
probability for long sequences when encoding the two sources
separately and decoding them jointly, as depicted in Fig. 1.
The achievable rate region established by the Slepian-Wolf
theorem is thus given by RX ≥ H(X|Y ), RY ≥ H(Y |X),
andRX +RY ≥ H(X,Y ). The corner pointsA andB of the

Fig. 1. Slepian-Wolf rate region.

Slepian-Wolf rate region correspond to the asymmetric set-
up, whereas all the points between A and B correspond to the
non asymmetric DSC case. When the correlation decreases,
the rate bound moves away from the origin (see Fig. 1).

2.2. Syndrome-based coding

The use of parity-check codes for approaching the corner points
of the Slepian-Wolf rate region was first suggested in 1974
[2]. It is suggested to construct bins as cosets of a capacity-
achieving parity-check code. A (n, k) code partitions the
space of 2n sequences into 2n−k “cosets” containing 2k words
with maximum Hamming distance. Each coset is indexed by
an (n − k)-length syndrome. Let x and y be two correlated
binary sequences of length n. These sequences are the real-
izations of the sources X and Y . The coder computes and
transmits the syndrome of x, sx. The sequence x of n input

bits is thus mapped into its corresponding (n − k) syndrome
bits, leading to a compression ratio of n : (n − k). The de-
coder, knowing the correlation between the sources X and
Y and the coset index sx, searches for the sequence in the
coset that is closest to y. In other words, maximum likelihood
decoding1 is performed in order to retrieve the original x se-
quence. Considering LDPC codes, the search for the closest
sequence is done with an approximated maximum likelihood
decoder: the sum-product algorithm.
The syndrome-based approach is optimum in the sense of

approaching the Slepian-Wolf bound. However, rate adapta-
tion, e.g., using puncturing mechanisms is not natural. When
syndrome bits are punctured, the decoder should in principle
search for the closest sequence in a union of cosets, which
would require modifying the sum-product decoder. If the
sum-product decoder is not modified, then the syndrome bits
(of degree one in the LDPC graph) are not protected, which
leads to systematic errors. A brute force decoder consists in
performing a sum product algorithm, but then the decoding
complexity of such a method would grow exponentially with
the number of punctured bits. The authors in [16] suggested
accumulating the syndrome bits before the puncturing step,
thus maintaining the performance of the code. The proposed
approach however is appropriate for the asymmetric set-up
only. In the sequel, the approach is extended in order to cover
the entire Slepian-Wolf rate region, that is not limited to the
asymmetric set-up.

3. CODING FOR THE ENTIRE SLEPIAN-WOLF
REGION

3.1. Non asymmetric SW coding for a given correlation

Let X and Y be two random binary correlated sources of
a given correlation defined by the cross-over probability p.
Let x and y be their realizations of length n. Let us con-
sider an (n, k) LDPC code defined by its parity-check ma-
trixH(n−k)×n = [A(n−k)×k B(n−k)×(n−k)]. The syndromes
sx = H.x and sy = H.y, of length (n − k), are computed
for both sequences and transmitted to the decoder. In addi-
tion, the k′ first bits of x (xk′

1 ) and the k − k′ next bits for the
source y (yk

k′+1), are transmitted as systematic bits, where k′

is an integer so that k′ ∈ [0, k]. The total rate for the sources
X and Y is respectively n−k+k′ and n−k′ bits. The struc-
ture of the coders is depicted in Fig. 2. Note that k′ = k and
k′ = 0 correspond to the two asymmetric set-ups with rates
given by the corner points A and B of the SW region.
The decoder computes first sz = sx ⊕ sy , which turns

out to be the syndrome of the error pattern z between x and
y. A modified LDPC decoder estimates ẑ = x̂ ⊕ ŷ from the
syndrome sz and the all-zero word of size n (see Fig. 3) [8].
More precisely, z corresponds to the smallest weight vector

1Note also, that the maximization is performed in a set of codewords with
syndrome that may not be 0.
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Fig. 2. The symmetric coders.

with syndrome sz , or in other words, z is the vector closest to
the all-zero word among the vectors with syndrome sz .

Fig. 3. First step in the decoding process: estimation of the
error pattern z = x ⊕ y.

Once the difference pattern is found, xk
k′+1 and yk′

1 can be
estimated thanks to the relation z = x ⊕ y: xk

k′+1 = yk
k′+1 ⊕

zk
k′+1 and yk′

1 = xk′

1 ⊕ zk′

1 . The subsequences xn
k+1 and yn

k+1

then remain to be computed. Since, sx = [A B]x = A xk
1 ⊕

B xn
k+1, then xn

k+1 = B−1 [sx ⊕ A xk
1 ], where B−1 denotes

the inverse of the matrixB [11][13]. At this stage, we can see
why a full-rank matrix B is mandatory for this algorithm to
work. Note that for a rate k/n channel code, the parity check
matrixH has rank n− k which insures that n− k columns of
H are free; then a permutation matrix, say Pn×n, is found so
that the matrixH has the right form.

3.2. Non asymmetric SW coding for varying correlation

We now consider the problem of adapting the rate of the above
coding/decoding system to varying correlation, by puncturing
some syndrome bits. To avoid degrading the performance of
the LDPC code, the syndrome bits are first accumulated be-
fore being punctured as suggested in [16]. This accumulating
allows to protect the punctured syndrome bits, with a code of
rate 1, so that the compression rate is not modified. The effect
of this accumulator code is equivalent to merging some rows
of the parity check matrix by adding them.
A set ofN matrices (Hi)i=1...N of sizes (n−ki)×n, i =

1 . . . N corresponding toN LDPC codes is considered. These
matrices are built according to [16]. Without loss of general-
ity, assume that ∀i, j ∈ [1, N ], i < j ⇒ (n− ki) < (n− kj),
meaning that theN matrices have a growing number of rows.
Also consider the set of permutation matrices (Pi)i=1...N of
size n × n so that ∀i ∈ [1, N ], Hi Pi has an invertible B

Fig. 4. The single rate-adaptive codec.

part. These permutation matrices are not all the same because
merging the rows of the original matrixH moves the location
of the free columns. The coding and decoding structures are
depicted in Fig. 4.
The coders send a first set of accumulated syndromes bits.

With that information, the decoder tries to find a first estimate
of the error pattern z. If the iterative algorithm does not con-
verge, that is ẑ does not satisfy the conditionH ẑ = sz , more
syndrome bits are requested to the encoder via a one-bit feed-
back channel, and this until ẑ has syndrome sz .
Let Hi be the matrix of stage i at which z is found. Both

the coder and the decoder know which (n − ki) columns of
Hi are free. Let k′ be an integer so that k′ ∈ [0, ki]. The
systematic bits for both sources can then be sent. The source
X transmits the k′ bits corresponding to the k′ first columns
of the ki columns of Hi which are not free. Y transmits the
ki − k′ bits corresponding to the ki − k′ remaining non-free
columns of Hi. Then RX = (n−ki)+k′

n
and RY = n−k′

n
. In

other words, the parameter i first determines the global rate of
the system, and k′ fixes the specific rates of X and Y . These
rates can be optimized each time a new sequence of length n
is to be encoded.

4. SIMULATIONS AND RESULTS

The tests have been conducted with a set of matrices gener-
ated in the same way as in [16]. We consider input sequences
of length n = 2046 and generate 65 matrices having sizes
ranging from 62 × 2046 to 2046 × 2046. The sources X and
Y are i.i.d. random variables with a uniform binary distri-
bution. The correlation between X and Y is modeled as a
BSC with crossover probability p. In our tests, p varies from
0.01 to 0.17, with a step of 0.04. For each correlation factor
p, different compression rate allocations are tested in order to
achieve any point of the SW boundary. This degree of free-
dom is obtained by tuning k′ the number of input bits sent by
source X . More precisely, 11 different values of k′ are con-
sidered, varying from 0 to k, with a step of 0.1 ∗ k; for each
k′, 500 words are tested; that way, we test about 107 bits for
each p.
Our system has a bit error rate of 9 × 10−5 and we are

only 0.0677 bits away from the bound, on average, which is
among the best results reported so far for a code of that size.
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The results and the corresponding theoretical bounds in the
Slepian-Wolf region are reported in Fig. 5.
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Practical and theoretical results for n = 2046, BER < 1e−4
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Fig. 5. Performance of the single rate adaptive codec.
Achieved compression rates are plotted for different corre-
lation parameters p and compared with the optimal Slepian
Wolf bounds.

5. CONCLUSION

We have designed a rate adaptive code for the non asymmet-
ric lossless DSC problem. More precisely, a single code has
been proposed that adapts to any variation in the correlation
between the two sources and that also achieves any point in
the Slepian Wolf region. The code is based on punctured ac-
cumulated codes. It is shown that the scheme needs a single
codec. Moreover, the source statistics are not required at the
encoder and the rate adaptation is performed with a feedback.
Finally, the proposed scheme does not require to re-encode
the data, while adapting the compression rate.
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