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ABSTRACT

In this paper, we study non-binary regular LDPC cycle
codes whose parity check matrix has fixed column weight 2
and fixed row weight d. We prove that the parity check ma-
trix of any regular cycle code can be put into a concatenation
form of row-permuted block-diagonal matrices after row and
column permutations if d is even, or, if d is odd and the code’s
associated graph contains at least one spanning subgraph that
consists of disjoint edges. Utilizing this structure enables
parallel processing in linear-time encoding, and parallel pro-
cessing in sequential belief-propagation decoding, which in-
creases the throughput without compromising performance or
complexity. Numerical results are presented to compare the
code performance and the decoding complexity.

Index Terms— Nonbinary, LDPC, cycle code, Galois
field, graph theory

1. INTRODUCTION

Gallager’s binary low-density parity-check (LDPC) codes [1]
are excellent error-correcting codes that achieve performance
close to the benchmark predicted by the Shannon capacity
[2]. The extension of LDPC to non-binary Galois field GF(q)
was first investigated empirically by Davey and Mackay over
the binary-input AWGN channel [3]. Since then, nonbinary
LDPC codes have been actively studied.
The LDPC codes with column weight j = 2 in their

parity check matrix H are termed as cycle codes [4]. Al-
though the distance properties of binary cycle codes are not
as good as the LDPC codes of column weight j ≥ 3 [1],
it has been shown in [5] that cycle GF(q) codes can achieve
near-Shannon-limit performance as q increases. Further, nu-
merical results in [5] demonstrate that cycle GF(q) codes can
outperform other LDPC codes, including degree-distribution-
optimized binary irregular LDPC codes. For high order fields
q ≥ 64, the best GF(q)-LDPC codes decoded by belief prop-
agation (BP) should be ultra sparse [3], with a good exam-
ple being the cycle codes that have j = 2. Reduced com-
plexity algorithms for decoding a general LDPC code over
GF(q) have been proposed in [6], [7]. A universal linear-
complexity encoding algorithm for any cycle GF(q) code is

This work is supported by the ONR grant N00014-07-1-0429 and the
NSF grant ECCS-0725562.

available in [8]. With the performance and implementation
advantages, cycle GF(q) codes are very promising for practi-
cal applications.
In this paper, we study LDPC cycle codes whose check

matrix has fixed row weight d, termed as d-regular cycle
codes. Using graph theory, we prove that through row and
column permutations the parity check matrix H of d-regular
cycle GF(q) codes can always be put into a concatenation
form of row-permuted block-diagonal matrices if d is even,
or, if d is odd and the code’s associated graph contains at
least one spanning subgraph that consists of disjoint edges.
This equivalent representation brings several benefits. First,
encoding for regular cycle GF(q) codes can be performed
in parallel in linear time. Second, it enables parallel pro-
cessing in sequential belief propagation decoding for regular
cycle GF(q) codes, which improves the decoding through-
put considerably without compromising the performance and
complexity. It also reduces the storage of the check matrixH
for encoding and decoding, and facilitates code design [13].
Simulation results confirm very good performance and re-
duced decoding complexity of regular cycle GF(q) codes.

2. MAIN RESULTS ON CODE STRUCTURE

A cycle GF(q) code is an LDPC code whose m × n parity
checkmatrixH has weight j = 2 for each column. As such, it
can be represented by an associated graphG = (V, E)withm
vertices V = {v1, . . . , vm} and n edges E = {e1, . . . , en},
where each vertex represents a constraint node correspond-
ing to a row of H, and each edge represents a variable node
corresponding to a column ofH [8].
If the cycle GF(q) code also has a fixed rowweight d inH,

the graph G is d-regular in that each vertex is exactly linked
to d edges [9]. We call this code as regular cycle GF(q) code.
Obviously we have 2n = dm for regular cycle GF(q) codes.
We first introduce two definitions from graph theory [9].
• k-factor: A k-regular spanning subgraph ofG that con-
tains all the vertices is called a k-factor of G.
Obviously, a 1-factor is a spanning subgraph that con-
sists of disjoint edges, while a 2-factor is a spanning
subgraph that consists of disjoint cycles.

• k-factorable: a graph G is k-factorable if there are
edge-disjoint k-factors G1, G2, . . . , GL such that G =
G1 ∪ G2 · · · ∪ GL.

29611-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



For a subgraph G′ of G, let HG′ be the sub-matrix of H
restricted to the rows and columns indexed by the vertices and
edges of G′ respectively, which can be obtained from H by
deleting the rows and columns other than those correspond-
ing to the vertices and edges of G

′
respectively. Let us now

introduce two sub-matrices ofH associated with an edge and
a cycle of the graphG. For each edge, the sub-matrix is

h̃e =
[
α
β

]
, (1)

where α and β correspond to those two nonzero entries of
the column of H indexed by this edge. For a length-k cycle
C that consists of k consecutive edges e1, e2, . . . , ek, we can
define a k × k matrix as

H̃c =

⎡
⎢⎢⎢⎢⎢⎣

α1 0 0 . . . βk

β1 α2 0 . . . 0
0 β2 α3 . . . 0
...

...
. . . . . .

...
0 . . . 0 βk−1 αk

⎤
⎥⎥⎥⎥⎥⎦ , (2)

where αis and βis correspond to those two nonzero entries of
the column ofH indexed by edge e i.
If a matrixH1 can be transformed into another matrixH2

simply through row and column permutations, we deem H 1

equivalent toH2 and denote this relationship asH1
∼= H2.

Our main results are the following.

Theorem 1 For a cycle GF(q) code, if its associated graph
G is d-regular with d = 2r, its parity check matrixH of size
m × n has the equivalent form

H ∼= [H̄1,P2H̄2, . . . ,PrH̄r], (3)

where Pi is m × m permutation matrix, and H̄i is of size
m × m, 1 ≤ i ≤ r. The matrix H̄i has an equivalent block-
diagonal form

H̄i
∼= diag(H̃c

i,1, H̃
c
i,2, . . . , H̃

c
i,Li

), (4)

where the matrix H̃c
i,l has the form of (2) and is of size ki,l ×

ki,l that satisfiesm =
∑Li

l=1 ki,l.

Theorem 2 Consider a regular cycle GF(q) code with d =
2r + 1. If its associated graph G contains at least one 1-
factor, then its parity check matrix H of size m × n has the
equivalent form

H ∼= [H̄1,P2H̄2, . . . ,PrH̄r,PeH̄e] (5)

wherePis andPe are permutation matrices, H̄i is anm×m
block-diagonal matrix having the form as in (4), i = 1, . . . , r,
H̄e is anm× m

2 matrix having an equivalent block-diagonal
form as

H̄e ∼= diag(h̃e
1, h̃

e
2, . . . , h̃

e
m
2
), (6)

where h̃e
i is a vector having the form as in (1).

Proof of Theorem 1: If G is d-regular with d = 2r, r >
0, G is 2-factorable as can be inferred from Corollary 2.1.5
of [9, p.33]. Denote the r edge-disjoint 2-factors of G by
G1, G2, . . . , Gr. Arrange the columns ofH in such a pattern
that the columns indexed by the edges ofG1 are placed in the
first m columns, followed by the m columns indexed by the
edges of G2 until the m columns which are indexed by the
edges of Gr. This way,H is partitioned to r sub-matrices of
sizem × m each. Arranged asH ∼= [HG1 , . . . ,HGr ], where
HGi is the sub-matrix ofH associated with Gi.
Now we show that each m × m sub-matrix HGi has an

equivalent block diagonal form as in (4). Each 2-factorG i can
be decomposed into a set of disjoint cycles. SupposeG i con-
sists of Li disjoint cycles Ci,l, 1 ≤ l ≤ Li, where Ci,l is of
length ki,l that satisfy m =

∑Li

l=1 ki,l. Arrange the rows and
columns ofHGi in sequence of rows and columns indexed by
Ci,1, Ci,2, . . . , Ci,Li , the resultant matrix will have a block-
diagonal form diag(H̃c

i,1, H̃
c
i,2, . . . , H̃

c
i,Li

), where H̃c
i,l rep-

resents the matrix associated with Ci,l and has a form as in
(2). Thus we have HGi = PiH̄iRi, where H̄i is defined in
(4), and Pi andRi are permutation matrices, 1 ≤ i ≤ r.
Therefore, the matrix H can be arranged to have an

equivalent form [P1H̄1R1,P2H̄2R2, . . . ,PrH̄rRr], We
can further permute the rows of H to let P1 be the identity
matrix and permute the columns ofHGi to let eachRi be the
identity matrix. The resultant matrix would have a form like
(3). This completes the proof. �

Proof of Theorem 2 is omitted here due to space limita-
tions (available in [13]).

3. ENCODING AND DECODING BENEFITS

The code structure in Section 2 brings many benefits on en-
coding, decoding, storage, and design of regular cycle codes,
as discussed in [13]. Due to space limitations, we here detail
the benefits to the encoding and decoding.

3.1. Linear-time encoding in parallel

The representation in Theorems 1 and 2 enables efficient en-
coding as follows. For d = 2r, partition the codeword x into
r sub-codewords of size m as x = [xT

c,1,x
T
c,2, . . . ,x

T
c,r]

T .
For d = 2r + 1, partition the codeword x into r + 1 sub-
codewords as x = [xT

c,1,x
T
c,2, . . . ,x

T
c,r,x

T
e ]T , where xc,i is

of size m, 1 ≤ i ≤ r, and xe is of size m/2. Without loss of
generality, assume H̄1 is full rank; let xc,1 contain the parity
symbols and the rest of x contain information symbols, which
leads to a code rate of (d − 2)/d. A valid codeword satisfies
Hx = 0, which implies that

H̄1xc,1=

{
−Pc

2H̄2xc,2 · · · −Pc
rH̄rxc,r, d = 2r

−Pc
2H̄2xc,2 · · · −Pc

rH̄rxc,r − PeH̄exe, d = 2r+1

(7)
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From (4), H̄1 is block diagonal diag(H̃c
1,1, . . . , H̃

c
1,L1

). Ac-
cording to the sizes of {H̃c

1,l}L1
l=1, let us partition xc,1 and the

right-hand side of (7) into L1 pieces as [xT
c,1,1, . . . ,x

T
c,1,L1

]T

and [bT
1 , . . . ,bT

L1
]T , respectively. Computation of xc,1 re-

quires solving the following L1 equations

H̃c
1,ixc,1,i = bi, 1 ≤ i ≤ L1. (8)

A linear time algorithm for solving these equations has been
proposed in Lemma 4 of [8]. Note that solving theseL 1 equa-
tions can be performed in parallel, thus encoding can be per-
formed in parallel in linear time. This provides a lot of flex-
ibility in the implementation of efficient encoders, which is
quite desirable especially when the codeword length is large.
Note that the universal linear-time encoding algorithm pre-
sented in [8] can only work in a serial manner.

3.2. Parallel processing in sequential BP decoding

Recently, a fully sequential version of standard belief propa-
gation (BP) decoding has been proposed to speed up the con-
vergence of decoding, which is denoted as shuffled BP in [10]
and sequential updating schedule in [11]. Compared with
standard BP decoding which works in a fully parallel man-
ner, sequential BP decoding works in a column-by-column
manner. It has been shown through simulations that the aver-
age number of iterations of the sequential BP algorithm can
be about half that of the parallel BP algorithm, where parallel
BP and sequential BP decoding achieve similar error perfor-
mance [10, 11]. The complexity per iteration for both algo-
rithms is similar, resulting in a lower total complexity for the
sequential BP algorithm [10, 11].
To decrease the decoding delay of the sequential BP and

preserve the parallelism advantages of the parallel BP, a par-
tially parallel decoding scheme named “group shuffled BP”
is developed in [10]. In the group shuffled BP algorithm, the
columns of H are divided into a number of groups. In each
group, the updating of messages is processed in parallel, but
the precessing of groups remains sequential. If the number
of groups is one, group shuffled BP reduces to the parallel
BP algorithm. If the number of groups equals the number of
columns of H, group shuffled BP reduces to the sequential
BP algorithm. Thus, group shuffled BP (partially parallel BP)
algorithm offers better throughput/complexity tradeoffs in the
implementation of efficient decoders.
With respect to the sequential BP algorithm, if there are

consecutive columns ofHwhich are orthogonal to each other,
i.e., no two columns intersect at a common row, then the up-
dating for these columns can be carried out simultaneously.
By performing updating for consecutive orthogonal columns
simultaneously, we can improve the throughput of sequen-
tial BP algorithm without any penalty in error performance or
total decoding complexity. We denote this algorithm as se-
quential BP decoding with parallel processing. This is anal-
ogous in principle to a partially parallel BP algorithm where

the columns in each group are orthogonal.
For a cycle GF(q) code, a collection of columns ofH are

orthogonal if and only if their corresponding edges in its asso-
ciated graphG are independent. With the structures presented
in Section 2, it is easy to find orthogonal columns for regular
cycle GF(q) codes. We find that for any regular cycle GF(q)
code the columns of H can be partitioned into at most 3

2d
orthogonal groups (See more details in [13]).
Compared with sequential BP decoding, which works in a

column-by-columnmanner and takes n steps, by running up-
dating for columns in each orthogonal group simultaneously,
we can greatly improve the throughput of sequential BP de-
coding algorithm for regular cycle GF(q) codes by a factor at
least 2n

3d . Note that n is usually large while d is usually small.
The large throughput improvement is very appealing in the
implementation of efficient decoders. Note that the perfor-
mance and complexity advantages of sequential BP decoding
are not compromised.

4. SIMULATION RESULTS

In all simulations the codewords are transmitted over AWGN
channel with binary phase-shift-keying (BPSK) modulation.
For each SNR, we run simulations until more than 40 block
errors have been observed or up to 1, 000, 000 block decod-
ings. Here we only present the results for the block length of
1008 bits; more simulation results with different block lengths
are available in [13].

Test Case 1 (Regular versus irregular cycle GF(q) codes).
Fig. 1 compares the performance of regular and irregular cy-
cle GF(q) codes under standard BP decoding up to 80 itera-
tions where the code rate is 1/2 and the codeword length is
1008 bits. The cycle codes over GF(26) have a symbol length
of 84 and the cycle codes over GF(28) have a symbol length of
63. Also plotted is the performance of a binary irregular rate-
1/2 LDPC code constructed by the Progressive Edge-Growth
algorithm [12] and that of a rate-1/2 Mackay’s regular-(3,6)
code, both having a code length of 1008 bits and decoded by
standard BP up to 80 iterations. The binary irregular code has
a density-evolution-optimizeddegree distribution pair achiev-
ing an impressive iterative decoding threshold of 0.3347 dB,
from Table I in [14].
It has been shown in [5] that irregular cycle codes over

GF(q) can outperform binary degree-distribution-optimized
LDPC codes. We observe from Fig. 1 that regular cycle codes
can also outperform binary degree-distribution-optimized
LDPC codes. In fact, Fig. 1 shows that regular cycle codes
and irregular cycle codes have similar performance.

Test Case 2 (Sequential versus parallel BP decoding).
Figs. 2 and 3 show the comparisons on the error performance
and the average number of iterations between the proposed
sequential BP decoding with parallel processing and standard
BP decoding for those regular cycle GF(q) codes shown in
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Fig. 1. Performance comparison of irregular and regular cycle codes
with binary degree-distribution-optimized irregular LDPC code and
the Mackay’s (3,6) regular code; The code length is 1008 bits.

Fig. 1. The maximum number of iterations is set to be 80.
We observe from Fig. 2 that the sequential BP decoding with
parallel processing achieves slightly better performance than
the standard parallel BP decoding. More importantly, Fig. 3
shows that the average number of iterations for the sequential
BP decoding is about 30 percent less than that of the standard
BP decoding at high SNR. Hence, the total decoding com-
plexity for the proposed algorithm is 30 percent less than that
for standard BP decoding algorithm. Moreover, the proposed
parallel processing enables a speedup on the throughput of
sequential BP decoding by a factor at least 2n

3d = 10.5 for
the regular GF(28) code and at least 2n

3d = 14 for the regular
GF(26) codes.

5. CONCLUSIONS

Through graph-theoretic analysis, we presented an equivalent
concatenation form of row-permuted block-diagonal matrices
for the parity check matrix of non-binary regular LDPC cycle
codes. Encoding utilizing this form can be performed in par-
allel in linear time. Decoding utilizing this form enables par-
allel processing in sequential BP decoding, which consider-
ably increases the decoding throughput without compromis-
ing performance or complexity. Simulations confirm that reg-
ular cycle GF(q) codes have very good performance.
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