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ABSTRACT

In this paper we investigate the Euclidean distance distribution in
turbo-equalized systems over static frequency-selective (ISI) chan-
nels 1. We propose a novel approach in evaluating the squared Eu-
clidean distance between transmitted sequences at the output of the
ISI channel based on the correlogram of error sequences. By inspect-
ing autocorrelation properties of error sequences, we derive the main
statistics of the output Euclidean distance. The proposed method
provides a more comprehensive tool to predict system behavior with
finite or infinite packet length. We exploit obtained results to eval-
uate the frame error rate (FER) performance of the system under
maximum-likelihood sequence estimation.

Index Terms— turbo-equalization, maximum-likelihood detec-
tion, Euclidean distance distribution, intersymbol interference.

1. INTRODUCTION

In digital packet communication systems over frequency-selective
channels, turbo-equalization [1] is an efficient technique that com-
bines signal detection and forward error correction (FEC) in itera-
tive scheme leading to considerable gains in intersymbol interfer-
ence (ISI) mitigation in comparison with systems using separated
signal detection and correction. Finite length system performance
can be predicted by analytic assessment of the corresponding max-
imum likelihood (ML) receiver. The performance of the maximum
likelihood sequence estimation for ISI channels have been first in-
vestigated by Forney [2] for non coded transmission, where an up-
per bound (often referenced as the Union Bound) was derived based
on the Euclidean distance distribution at the output of the ISI chan-
nel. This distribution is estimated using a trellis-based approach us-
ing the state diagram of the channel for a non coded transmission
to calculate single error events weights and their associated mul-
tiplicities. The same principle was used in [3] by treating the ISI
channel of length L as a concatenation of a rate 1/L convolutional
encoder with a memoryless nonlinear mapper. In [4], a method is
proposed to upperbound the performance of a serially concatenated
turbo-coded system assuming uniform interleaving. This approach
has been further extended by several authors and applied to the case
of turbo-equalized systems [5], [6] in order to evaluate system per-
formance over ISI channels. In [5], the performance analysis of
turbo-equalized system was studied over special type of ISI chan-
nels which are the partial response channels. In [6], the authors tried
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Fig. 1. Turbo-equalized transmission system model

to account for general ISI channels in the derivation of the Euclid-
ian distance spectrum using an enumeration technique. They have
efficiently applied their method to 2-taps and 3-taps channels, but
the extension to channels with more than 3-taps appears as compu-
tationally prohibitive. In this paper, we address the problem of the
evaluation and the characterization of the distance spectrum for gen-
eral ISI channels for ML performance evaluation of turbo-equalized
systems. To this end, we propose a new method for the evaluation
of the Euclidean distance distribution based on the evaluation of the
autocorrelation of the error sequence. Using this new approach, we
derive a new upper bound on the FER performance of the ML re-
ceiver for a turbo-equalized system.

2. SYSTEMMODEL AND MAXIMUM-LIKELIHOOD
DECODING

We consider the communication system model in Fig. 1. A sequence
ofK information bits bn is encoded into a sequence ofN coded bits
using rate R = K/N error correcting code. After random inter-
leaving, the interleaved sequence cn is mapped into a sequence of
symbols xn using BPSK modulation. The modulated symbols xn

are transmitted through a static ISI channel with equivalent discrete
time finite impulse response (FIR) given by h = (h0, ..., hL−1)
where all coefficients are assumed to be real-valued. The received
signal is modeled as follows:

rn =
L−1X
i=0

hixn−i + wn, (1)

where wn is an independent additive white Gaussian noise with vari-
ance σ2

w. At the receiver side, we consider a turbo-equalizer for
iterative detection and decoding. The union bound on the FER per-
formance of the concatenated system, assuming uniform interleaver,
is the sum of pairwise error probabilities between all pairs of coded
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sequences x = (x1, · · · , xN) given in [4], [6] by

Pw ≤
X
d2

E

A(d2
E) ·Q

0
@s d2

E

4σ2
w

1
A , (2)

where d2
E is the squared Euclidean distance between the transmitted

sequence x and the estimated sequence x̂ at the output of the noise-
less ISI channel, Q(·) is the Gaussian error probability function, and
A(d2

E) is the output squared Euclidean distance enumerator of the
concatenated system given by

A(d2
E) �

NX
d=dmin

Ac(d) ·
Ach

d (d2
E)`

N

d

´
2d

, (3)

where dmin is the minimum free distance of the FEC code, Ac(d)
is the output weight enumerator of the FEC code defined as the total
number of code error sequences e = x̂− x with Hamming weight
dH(e) = d, and Ach

d (d2
E) is the input-output Euclidean distance

enumerator of the ISI channel, defined as the number of all error se-
quences with input Hamming weight d and output squared Euclidean
distance d2

E . The squared Euclidean distance d2
E between the trans-

mitted sequence x and the estimated sequence x̂ at the output of the
noiseless ISI channel can be calculated as,

d2
E = ‖h ∗ x̂− h ∗ x‖2 = ‖h ∗ e‖2 , (4)

which is function of the error sequence e and will be denoted in the
sequel by d2

E(e). The squared Euclidean distance can be thought as
the energy of the filtered error sequence e by the channel response
h. Since the ISI channel disperses the energy of the transmitted se-
quence overN+L−1 symbol periods, it is more accurate to evaluate
the squared Euclidean distance over N + L− 1 samples rather than
only N samples as it is the case in some previous works [5], [6].
Moreover, we assume, in the evaluation of (4), that symbols outside
sequence period are known by the receiver and, consequently, the
corresponding error values are assumed to be identically zeros. For
the BPSK mapping scheme, error sequence elements en take their
values from the ensemble {−2, 0, +2} depending on the transmit-
ted elements xn in such a way that x + e is a valid code sequence.
The second term in (3) can be interpreted as the conditional prob-
ability of having a squared output Euclidean distance d2

E given the
input weight d of the error sequence. We denote this conditional
probability by Pd(d

2
E),

Pd(d
2
E) �

Ach
d (d2

E)`
N

d

´
2d

. (5)

We focus in this paper on the characterization of this conditional
probability in order to evaluate the upper bound (2). We start by
establishing a new formulation for the Euclidean distance in order to
assess its statistical characteristics.

3. CHANNEL OUTPUT EUCLIDEAN DISTANCE

The squared Euclidean distance between any pair of sequences, hav-
ing an error sequence e between them, at the output of noiseless ISI
channel is given by

d2
E(e) = ‖h ∗ e‖2 =

M+L−1X
m=1

˛̨̨
˛̨L−1X

�=0

h(�)e(m− �)

˛̨̨
˛̨2. (6)

By developing the squared sum and performing some algebraic com-
putations, we can rewrite the squared Euclidean distance under the
form

d2
E(e) =

L−1X
�=−L+1

Rh(−�)Re(�), (7)

where Rz(�) are the aperiodic autocorrelation coefficients (AAC) at
lag � of the parameter sequence z, and defined by

Rz(�) �

NX
n=1

z(n)z(n− �), |�| ≤ N − 1,

with zn = 0 for n /∈ [1, N ]. The equation (7) shows that, for a given
channel response, the squared Euclidean distance is fully character-
ized by the AAC of the error sequence up to lag L−1. Consequently,
the Euclidean distance inherits all autocorrelation properties. For a
real channel response and real modulation alphabet the equation (7)
can be rewritten, using the symmetry of the AAC Rh(−�) = Rh(�),
as the sum of two terms

d2
E(e) = Rh(0)Re(0)| {z }

�Λ

+ 2

L−1X
�=1

Rh(�)Re(�)| {z }
�Δ

. (8)

The first term Λ is the squared Euclidean distance over AWGN chan-
nel, whereas the second term Δ expresses its variations due to the
presence of the ISI. Let E be the set of all possible error sequences
e. Then, the squared Euclidean distance can be viewed as a dis-
crete random variable taking its values in positive real numbers, and
defined over the probability space E . It is expressed as a linear mul-
tivariate function that maps the first L autocorrelation coefficients
Re(�) for � = 0, · · · , L − 1 to positive real number. Autocorre-
lation coefficients are also discrete random variables over the same
probability space.

4. CONDITIONAL DISTANCE DISTRIBUTION

The conditional probability Pd(d
2
E) is given by the distribution of

d2
E over a subset Ed of E formed by all error sequences e ∈ E with
Hamming weight dH(e) = d. For a fixed input error weight d the
first term in (8) is a constant Λ = 4d assuming unit channel gain
(Rh(0) = 1), while the interference term Δ is a weighted sum of
L−1 random variables Re(�) for 1 ≤ � ≤ L−1 taking their values
in the ensembleR � {4k : k = −(d− 1), · · · , +(d− 1)}. Before
studying the conditional distance distribution, we derive its average
and variance.

4.1. Average and variance

Assuming the independence between error elements en, it can be
easily shown from the definition of the autocorrelation that the ran-
dom variables Re(�) are pairwise uncorrelated with zero mean and
variance given by,

σ2(Re(�)) = 16(N − �) ·
d(d− 1)

N(N − 1)
, 1 ≤ � ≤ N − 1. (9)

The mean of the squared Euclidean distance can be calculated by
averaging (8). We obtain

μ(d2
E) = Λ = Rh(0)Re(0) = 4dEh, (10)
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where Eh � Rh(0) is the channel gain. The non-correlation be-
tween the AAC allows us to evaluate the variance of the squared
Euclidean distance, which is an important measure of distance dis-
persion introduced by the ISI channel. This yields to

σ2(d2
E) = 64

d(d− 1)

N(N − 1)

L−1X
�=1

(N − �)R2
h(�), (11)

which shows that the variance for large values of N , in comparison
with channel length L, is proportional to 1/N which explains the
interleaving gain in the system. When N tends to infinity with fixed
value of d the variance σ2(d2

E) tends to zero. This explains the con-
vergence of the performance to AWGN case as it was already shown
in [7] under iterative decoding assumptions.

4.2. Conditional distance distribution

Since d2
E is a weighted sum of related random variables, the

complete characterization of Pd(d
2
E) requires the knowledge of

the joint probability of autocorrelation coefficients. Let Re =
(Re(1), · · · , Re(L − 1)) denotes the vector formed by the first
L − 1 out-of-phase correlation lags. Let VR denotes the set of all
possible values ofRe. The conditional probability can be calculated
as,

Pd(d2
E = x) =

X
Re∈VR:d2

E
=x

PJ (Re), x > 0, (12)

where PJ (Re) denote the joint probability of the autocorrelation
vector Re. Unfortunately, to the author’s knowledge there is no
closed-form expression for the joint probability of AAC [8] and,
in general, it is very difficult to be evaluated, specially for large
packet size. To overcome this problem, we resort to bounding tech-
niques on the joint probability as it will be shown in the next sec-
tion. However, for simple ISI channels with only two non-zero tap
coefficients, as it is the case for some partial response channels,
h = (h0, 0, · · · , 0, hL−1) for some L > 1 only a single AAC
Re(L − 1) will be implied in the evaluation of the Euclidean dis-
tance. In this case, the corresponding marginal probability mass
function (p.m.f), denoted by PL−1, determines the output Euclidean
distance distribution of the channel. Marginal p.m.f can be deter-
mined as follows. We begin with the p.m.f of Re(1). For this, we
define a new variable S1 =

PN−1

i=1
|z1,i| where z1,i = eiei+1/4.

The introduced variable S1 gives the number of non-zero terms in
the autocorrelation definition. We evaluate the p.m.f of Re(1) as the
marginal probability of Re(1) conditionally to S1,

Pr(Re(1)) =
d−1X
s=0

Pr (Re(1)|S1 = s)) Pr(S1 = s). (13)

First, we note that S1 is also the number of consecutive non-zero
elements in the error sequence e. An exact enumeration of the num-
ber of consecutive non-zero elements in an error sequence of length
N with Hamming weight d leads to the following hyper-geometric
p.m.f. of S1

Pr(S1 = s) =

`
d−1

s

´`
N+d−1

d−s

´`
N

d

´ . (14)

Second, for a given value of S1 = s, we have Re(1) = 4(s −
2n) where n is the number of negative elements in e. Since there
is
`

s

n

´
different possibilities out of 2s to select negative elements

from s non-zero i.i.d elements We find the conditional probability

Pr(Re(1)|S1 = s)), after defining k = s− 2n, is

Pr(Re(1) = 4k|S1 = s)) =

`
s

n

´
2s

= 2−s

 
s

s−|k|
2

!
, (15)

with the convention
`

i

j

´
= 0 for non integer values of j. By substi-

tuting equations (14) and (15) in (13) we obtain the p.m.f of Re(1),

P1(4k) =
1`
N

d

´ d−1X
s=|k|

2−s

 
d− 1

s

! 
N − d + 1

d− s

! 
s

s−|k|
2

!
. (16)

Similar analysis can be applied for higher lags and we can show
that when N >> L (which is the practical case) all AAC can be
considered as identically distributed with the same p.m.f given by
(16). This result can be predicted from the expression of the variance
of AAC (9) which presents a very small variations with lag � for large
packet length N . With this, we find the same results in [5], [6] for
the distance distribution of 2-taps channels with a slight difference
related to the difference in defining the output Euclidean distance as
we noticed before.

4.3. An upper bound on distance distribution

In order to evaluate the union bound in (2), we upperbound the con-
ditional distance distribution by upper bounding the joint probabil-
ity of AAC based on the knowledge of the corresponding marginal
p.m.f. It is shown in [9] that attainable autocorrelation values must
lay within a convex region, denoted by VR, defined by all L-uple
vectorsRe = (Re(0), · · · , Re(L− 1)) with positive-definite auto-
correlation matrix ML defined by,

ML =

2
66664

Re(0) Re(1) · · · Re(L− 1)

Re(1) Re(0)
. . .

...
...

. . .
. . . Re(1)

Re(L− 1) · · · Re(1) Re(0)

3
77775 .

Mathematically, VR is defined by

VR � {Re ∈ R
L : det(ML) > 0}. (17)

The joint probability of the autocorrelation vector Re denoted by
PJ , knowing marginal p.m.f Pk, can be upper bounded by the mini-
mum of all marginal probability as follows,

PJ(Re) ≤ min [P1(Re(1)), · · · , PL−1(Re(L− 1))] , (18)

for Re ∈ VR and zero otherwise. This bound is the best known
bound on the joint probability if no other information is available
about the joint probability. Further investigations for additional in-
formation about joint probability may result in a tighter upper bound.

5. MINIMUM FREE EUCLIDEAN DISTANCE

Now, we show that the proposed approach allows us to calculate the
minimum free Euclidean distance by solving a minimization prob-
lem under constraints. Minimizing the squared Euclidean distance
over valid autocorrelation values (VR) gives the minimum Euclidean
distance dE,min (for sufficiently large frame size, see [10]). Be-
cause the Euclidean distance is a linear function of autocorrelation
coefficients, the minimum will be achieved for some point on the
boundary region of valid autocorrelation values VR. The convexity
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Fig. 2. The region VR of attainable values for re(1) and re(2).

of VR ensure the convergence of the minimization algorithm to the
actual minimum free distance of the channel. We show the determi-
nation of dE,min by an example. The FIR of the Proakis-B channel
is h = (0.408, 0.817, 0.408) of length L = 3. The AAC values for
positive lags are Rh(0) = 1, Rh(1) = 0.666 and Rh(2) = 0.166.
The output Euclidean distance is evaluated using (8) as,

d2
E = Re(0) + 1.33Re(1) + 0.33Re(2). (19)

The determinant of the autocorrelation matrix det(M3) expressed in
terms of the normalized AAC values re(�) � Re(�)/Re(0) as,

det(M3) = R3
e(0)[1− re(2)][1 + re(2)− 2r2

e(1)]. (20)

The boundary can be found by making det(M3) = 0 which yields
to following solution (see Fig 2)

re(2) = 2r2
e(1)− 1, or re(2) = 1. (21)

Minimizing the Euclidean distance in (19) with the constraints in
(21) leads to the following solution R1 = −4(d − 1) and R2 =
4(d − 2) for which we have d2

E,min = 2.66 for any value of error
weight d. This minimum value is attained by any error sequence
with consecutive error elements of alternating signs.

6. NUMERICAL RESULTS

In Fig. 3 we show the calculated upper bound from (2) for the
Proakis-B channel. On the same figure we traced the lower bound
on code FER performance over AWGN which is also a lower bound
on the coded system over any ISI channel. We compare obtained
bounds to the simulated performance using a maximum a posteri-
ori turbo-equalizer using the Backward-Forward algorithm with 5
turbo-iterations. The gap between the two bounds at medium SNR
is about 1dB, and the upper bound diverges for at high SNR values.
This is due to the poor quality of the joint probability bound.

7. CONCLUSIONS

In this paper, we present a new approach to evaluate the output Eu-
clidean distance of a general ISI channel. we determine the main
statistical characteristics of the output Euclidean distance including
mean, variance, minimum distance, and distance distribution. We
apply obtained results to evaluate an upper bound on the FER of the
ML receiver for turbo-equalized systems. Our approach allows for
better understanding of the impact of system parameters on the per-
formance behavior. It is a general framework and can be extended
to time varying channels with known statistics. It would be of inter-
est to extend this approach to high order modulations. with a given
mapping scheme.
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Fig. 3. Lower and upper bounds on the FER of turbo-equalized
Proakis-B channel with packet size N = 256 using convolutional
code (7,5) in comparison with simulated results.

8. REFERENCES

[1] C. Douillard, A. Picart, P. Didier, M. Jzquel, C. Berrou, and
A. Glavieux, “Iterative correction of intersymbol interference:
turbo-equalization,” European Trans. Telecommun., vol. 6, pp.
507–512, 1995.

[2] G. Forney Jr., “Maximum-likelihood sequence estimation of
digital sequences in the presence of intersymbol interference,”
IEEE Trans. Inf. Theory, vol. 18, pp. 363–378, 1972.

[3] S. A. Raghavan, J. K. Wolf, and L. B. Milstein, “On the per-
formance evaluation of ISI channels,” IEEE Trans. Inf. Theory,
vol. 39, pp. 957–965, 1993.

[4] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial
concatenation of interleaved codes: performance analysis, de-
sign, and iterative decoding,” IEEE Trans. Inf. Theory, vol. 44,
pp. 909–926, 1998.

[5] M. Oberg and P. H. Siegel, “Performance analysis of turbo-
equalized partial response channels,” IEEE Trans. Commun.,
vol. 49, pp. 436–444, 2001.

[6] J. Li, K. R. Narayanan, and C. N. Georghiades, “An efficient
algorithm to compute the euclidean distance spectrum of a
general intersymbol interference channel and its applications,”
IEEE Trans. Commun., vol. 52, pp. 2041–2046, 2004.

[7] N. Sellami, A. Roumy, and I. Fijalkow, “A proof of conver-
gence of the MAP turbo-detector to the AWGN case,” To ap-
pear in IEEE Trans. Signal Processing, 2007.

[8] S.M. Kay, A.H. Nuttall, and P.M. Baggenstoss, “Multidimen-
sional probability density function approximations for detec-
tion, classification, and model order selection,” IEEE Trans.
Signal Process., vol. 49, pp. 2240–2252, 2001.

[9] M. H. Quenouille, “The joint distribution of serial correlation
coefficients,” The Annals of Mathematical Statistics, vol. 20,
pp. 561–571, 1949.

[10] A. Steinhardt and J. Makhoul, “On the autocorrelation of finite-
length sequences,” IEEE Trans. ASSP, vol. 33, pp. 1516–1520,
1985.

2952


