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ABSTRACT

We consider adaptive two-channel multiple-description cod-
ing. We provide an analytical method for designing a resolution-
constrained symmetrical multiple-description coder that uses an in-
dex assignment matrix. We use existing index assignment algo-
rithms that are known for their good properties within our adaptive
multiple-description coding architecture. These existing index as-
signment algorithms are parameterized and the coefficient of quan-
tization of the side coders is described by a rational function. This
leads to an analytical solution for the design problem, facilitating
real-time adaptation based on information provided by feedback
channels or rate conditions imposed by network management. Our
experimental results show that the practical performance closely ap-
proximates theoretically obtained optimal behavior.

Index Terms— Scalar quantization, high-rate quantization, mul-
tiple description coding (MDC), feedback channels

1. INTRODUCTION

Multiple description coding (MDC) addresses the ubiquitous prob-
lem of packet loss in packet networks by exploiting diversity. It as-
sumes that two or more independent channels are available for trans-
mission. Such independence is commonplace, even if a single path-
way is employed. MDC algorithms create two or more descriptions
of a source facilitating the reconstruction of useful estimates of the
source from any subset of descriptions. Receiving all descriptions
leads to an accurate reconstruction and the quality progressively de-
creases with the number of descriptions lost.

The capacity and packet loss rate of modern communication net-
works is highly variable, both in time and between networks. Exist-
ingMDCmethods generally do not reflect this variability: the design
of an MDC for a particular rate and packet loss environment requires
off-line optimization. In this paper, we address this shortcoming of
MDC by introducing an MDC algorithm that facilitates redesign of
the algorithm in real time, based on information provided by a feed-
back channel (or network management).

Existing MDC design methods are commonly iterative. This is
illustrated by the classic work on MDC for the two-channel scalar
MDC by Vaishampayan [1]. The method applies to the level-
constrained (resolution-constrained) case and is a generalization of
the iterative Lloyd algorithm. A related iterative design procedure
for entropy-constrained scalar MDC was presented in [2]. An ana-
lytical lattice-based design method of entropy constrained MDC was
recently posed and solved by Østergaard for a general K-channel
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vector case of MDC, where the probability of packet erasure is given
[3]. This method includes a step of searching for the best index as-
signment, which is computationally expensive. A limitation of lat-
tice based approach is that it cannot easily be generalized to the res-
olution constrained case.

Effective methods for real-time adaptation of MDC can be based
on analytical solutions for the design problem. In this paper, we pro-
pose an analytical solution to the resolution-constrained case of two-
channel scalar MDC. We selected scalar design because it facilitates
low computational complexity and is the only choice when a low
processing delay is required. Scalar design can approach optimal-
ity if signal modeling is used to remove sample dependencies (for
example by using Gaussian mixture models [4]).

The MDC system considered follows the architecture that is
most common [1][2]: two side encoders process a sequence of in-
dices that is produced by a “central” quantizer operating on a se-
quence of signal samples. The output of the side encoders are two
separate sequences of indices that correspond to the two descrip-
tions. The receiver contains three decoders: a central decoder for
the case that both descriptions are received and two side decoders,
one for each description. The side decoders are used if only one
description is used.

A key part of an MDC system with the described common ar-
chitecture is an index assignment (IA) algorithm that assigns two
indices to the “central” index obtained from the quantizer. This as-
signment process is fully specified by a so-called IA matrix. The
definition of the IA matrix is an obstacle to analytic solutions for the
MDC design problem. Determining the matrix may involve combi-
natorial problems and complex training procedures, which are not
suitable for real-time implementation. Instead, we make use of a set
of existing IA algorithms that are known for their superior properties.
We parameterize this set of IA algorithms and use the parameterized
approximation to fill in and optimize the IA matrix. The proposed
parametrization can be used for any IA algorithm that generates a
periodical pattern of indices within the IA matrix.

In Section 2 we discuss the approximation of the distortion asso-
ciated with the side coders by a rational function. The result is then
applied to solve the MDC design problem in Section 3. We evaluate
the performance of our method in Section 5.

2. INDEX ASSIGNMENT ALGORITHMS

Index assignment plays an important role in the design of MDC. It
maps the indices of the central quantizer to indices used by the side
decoders as shown in Fig. 2. Some popular designs of IA algorithms
are known to have good properties. Two such algorithms, nested IA
and linear IA, were proposed by Vaishampayan [1]. A herringbone
IA was presented in [5] with an application to K-channel MDC. A
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Fig. 1. Two-channel scalar MDC scheme.

relatively obvious way to fill in the IA matrix is by using staggered
IA, where only two diagonals of the IA matrix are used. This algo-
rithm has been extended to the many-diagonals case in [6].

It is convenient to consider an MDC encoder as two consecu-
tive mappings, as is shown in Fig. 1: one from a source sample to
a central qantizer index and a second from the central quantizer in-
dex to side indices. We consider the scalar resolution-constrained
case and denote the number of cells by r. In the first step a source
sample x is quantized using the central quantizer. Then the scalar
input x ∈ R is mapped to the index k if it falls inside the inter-
val Vk ≡ [tk, tk+1), k ∈ {1, ..., r}. Let us denote this mapping
as ϑ: k = ϑ(x). In the second step the index k is mapped to
the pair of indices k1 and k2 and we denote these mappings as α1

and α2. We consider the symmetrical case with M reconstruction
points for each side quantizer. Thus, we have k1 ∈ {1, ..., M} and
k2 ∈ {1, ..., M}. The mapping from the central quantizer k to the
side indices k1 and k2 is done using the IA matrix. All of the de-
scribed IA algorithms result in a band IA matrix. The algorithms
can each be parameterized in terms of the number of elements in
each row and column of the IA matrix, v. Thus, we can generate an
IA matrix for a given v.

Regularities in the IA matrix can be used to derive a rational
function that corresponds to the coefficient of quantization for a side
coder. Such a rational function of v represents the contribution of
the central coder cells to the side-coder cell distortion. It depends on
the geometry of the side-coder cell. The function will be derived in
next section for the case of linear index assignment.
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Fig. 2. An example of a linear IA with M = 10 and v = 5. Side
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1 (4) is marked. The central quantizer has 43 cells and
each side decoder has 10 cells.

3. THE INDEX ASSIGNMENT DESIGN PROBLEM

We formulate the MDC design problem as the minimization of the
mean distortion, given the probability of packet erasure for a fixed
side coder rate. We consider a scalar stochastic variable X with
known probability density function (pdf) p(x) and make the follow-
ing assumptions:
1. The source pdf p(x) can be approximated as constant within
the side coder cell extent;

2. The central coder cell size can be approximated as constant
inside the side coder cell.

An expression for the distortion associated with side coder j, j ∈
{1, 2} can be derived using the standard high-rate approach:

d
(j)
s =

∫ tr+1

t1

p(x)
(
x − x̂

(j)

αj(α(x))

)2

dx (1)

=

M∑
i=1

p(x̂
(j)
i )

∑
k∈α−1

j
(i)

∫
Vk

(
x − x̂

(j)
i

)2

dx.

Let us definemj(i) = min(α−1
j (i)), hj(i) = α−1

j (i) − mj(i) and
substitute x = y + tmj (i). Furthermore, let Δi = ti+1 − ti. We
obtain

d
(j)
s =

M∑
i=1

p(x̂
(j)
i )

∑
k∈hj(i)

∫ (k+1)Δi

kΔi

(
y − y

(j)
i

)2

dy, (2)

where y
(j)
i is the side coder reconstruction point. The distortion of a

single side coder cell is then

∑
k∈hj(i)

∫ (k+1)Δi

kΔi

(
y − y

(j)
i

)2

dy =

= Δ3
i

∑
k∈hj(i)

(
1

3
+ k + k

2) − Δ2
i y

(j)
i

∑
k∈hj(i)

(1 + 2k) +

+|hj(i)|Δi(y
(j)
i )2. (3)

Differentiation with respect to y
(j)
i allows us to find the side-coder

reconstruction point that minimizes the contribution of one side coder
cell contribution to the side distortion. Substituting this result into
(3) allows us to write an expression for the side-coder distortion

d
(j)
s =

M∑
i=1

{
p(x̂

(j)
i )

[ ∑
k∈hj(i)

(
1

3
+ k + k

2) +

−
1

4|hj(i)|

( ∑
k∈hj(i)

(1 + 2k)

)2]
Δ3

i

}
. (4)

Thus, the side-coder distortions can be approximated by

d
(j)
s =

f(v)

v

∫ tr+1

t1

p(x)Δ(x, v)2dx, (5)

which has a form that is typical in high-rate theory. The function
f(v) � f(v, i) in (5), which specifies the coefficient of quantization
of the side coder, is

f(v, i) =
∑

k∈hj(i)

(
1

3
+ k + k

2) −
1

4|hj(i)|

⎛
⎝ ∑

k∈hj(i)

(1 + 2k)

⎞
⎠

2

.

(6)
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Table 1. Rational functions f(v) and polynomials corresponding to the considered IA algorithms.
IA f(v) optimization polynomial

staggered 2
3

-
herringbone (odd v) 1

16
− 9v

64
+ 5v2

24
− 5v3

96
− v4

48
+ 5v5

192
5wv5 − 2wv4 − 20wv2 + (35w − 8)v − 18w

herringbone (even v) v2

12
− v3

48
− v4

48
+ 5v5

192
5wv4 − 2wv3 − 8wv + 8w − 8

linear 4v6
−3v4+18v2

−3
192v

2wv6 − (5w + 4)v2 + 3w

nested 5v6
−8v5+14v4

−16v3+45v2+24v−48
192v

5wv6 − 4wv5 + 8wv3 − (37w + 8)v2 − 36wv + 96w

We recall that, in the symmetrical case, v denotes the number of
diagonals of the IA matrix. We need an expression for f(v, i) to
optimize the side distortion analytically. Next we derive an approx-
imation of f(v, i) for the linear index assignment case; the method
also applies to other index assignment algorithms. We note that for
linear index assignment |hj(i)| = v (this holds also for others index
assignments considered here) for almost all i (we neglect the bound-
ary conditions, assuming v � M ). With z = 1

2
(v − 1) and taking a

typical pattern of indices for the linear index assignment we find the
elements of the set hj(i, z):

hj(i, z) � h(z) = ...

{(k − 1)(z + 1) : k = 1, ..., z + 1} ∪ (7)
∪{z(z − 1) + z(k − z − 1) : k = z + 2, ..., 2z + 1},

valid for both side coders. Based on these approximations and (6),
we can compute following rational function f(v) (the dependency
on i is neglected) for the linear index assignment:

f(v) =
4v6 − 3v4 + 18v2 − 3

192v
. (8)

We can make the same approximation for other index assignment
algorithms. The resulting rational functions are shown in Table 1.
The distortion for the central coder is expressed as

d0 =
1

12

∫ tr+1

t1

p(x)Δ(x, v)2dx. (9)

Because we consider the symmetric case, the side distortion for both
channels d1 and d2 is

ds = d1 = d2 =
f(v)

v

∫ tr+1

t1

p(x)Δ(x, v)2dx. (10)

Knowing the probability of packet erasure w we can now ex-
press the total distortion as the weighted sum of the central distor-
tion, the side distortion and the distortion for the case that no packets
arrive:

dt = (1 − w)2d0 + 2(1 − w)wds + w
2
E{X2}. (11)

To find the best performing MDC, we must minimize the composite
distortion d(v, w) = (1 − w)2d0 + 2(1 − w)wds over the set of
mapping functions ℘ used for index assignment, given a rate con-
straint:

min
℘

d(v,w)

subject to
∫ tr+1

t1

1

Δ(x, v)
dx = 2R

v = Mv, (12)

where R denotes the rate in bits. M is the number of the reconstruc-
tion points for each of the side coders.

Our design problem can be written in a Lagrangian formulation:

η =
(1 − w)2

12

∫ tr+1

t1

p(x)Δ(x, v)2dx +

+2(1 − w)w
f(v)

v

∫ tr+1

t1

p(x)Δ(x, v)2dx +

+λ

(∫ tr+1

t1

1

Δ(x, v)
dx − Mv

)
. (13)

The solution forΔ(x, v) of the corresponding Euler-Lagrange equa-
tion is

Δ(x, v) =
1

Mv

∫ tr+1

t1
(p(x))

1
3 dx

(p(x))
1
3

. (14)

The central coder distortion can be expressed as

d0 =
1

12M2v2

(∫ tr+1

t1

(p(x))
1
3 dx)

)3

(15)

and the expression for the side coder distortion is

ds =
f(v)

M2v3

(∫ tr+1

t1

(p(x))
1
3 dx)

)3

. (16)

It is now possible to derive the optimal number of elements v of a
column of the IA matrix for all considered index assignments. To
this purpose, we differentiate the composite distortion with respect
to v

∂d(v, w)

∂v
= ξ

[
−

(1 − w)2

6v3
+ (17)

−2(1 − w)w
f ′(v)v3 − 3f(v)v2

v6

]
,

ξ =
1

M2

(∫ tr+1

t1

p(x)1/3
dx

)3

.

After some algebra we find that the composite distortion is a univari-
ate polynomial of v. The candidates for the optimal values of v are
the real roots of the polynomials given in the Table 1. The resulting
MDC design algorithm for the IA matrix is shown in Table 2.

4. RESULTS

In this section compare the proposed analytical MDC design proce-
dure of Table 2 with known asymptotic results and with numerical
results. For the numerical results we use a Gaussian source.

We first relate our results to the asymptotical results of [7]. Asymp-
totically with increasing rate, the design problem becomes

min
℘

d0

subject to ds < dc and
∫ tr+1

t1

1

Δ(x, v)
dx = Mv,
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Table 2. Design algorithm for a given erasure probability.
For all IA algorithms do:
1. Compute optimal v for given w using optimiza-
tion polynomial from Table 1;

2. Generate matrix for the selected IA and optimal
v;

3. Design central quantizer using (14);
4. Compute reconstruction points of central quan-
tizer using

x̂
(C)
k =

∫ tk+1

tk
xp(x)dx∫ tk+1

tk
p(x)dx

;

and reconstruction points for the side quantizer

x̂
(j)
i =

∑
k∈α−1

j
(i)

∫ tk+1

tk
xp(x)dx

∑
k∈α−1

j
(i)

∫ tk+1

tk
p(x)dx

;

Select the IA algorithm with lowest value for (11).

where dc is a constraint on the side distortion. This leads to follow-
ing result

dcM
2
v
3 − f(v)

(∫ tr+1

t1

(p(x))
1
3 dx

)3

≥ 0, (18)

which again allows for finding an optimal v. The performance of
our design is compared to the asymptotical optimality results for the
level-constrained two-channel scalar MDC in Fig. 3.

We evaluated the accuracy of the approximation for f(v) for the
case of a Gaussian source with unit variance. The total distortion ob-
tained by using f(v), based on plugging (15) and (16) into (11), was
compared to the distortion computed numerically. The results are
shown in Fig. 4. The approximation by f(v) is seen to be accurate
for rates as low asR = 3. As shown, the staggered index assignment
always has v = 2, so the distortion cannot be decreased by increas-
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ing v for low probabilities of erasure, resulting in the levelling off of
the corresponding curves.

5. CONCLUSION

We described an algorithm for designing resolution-constrained two-
channel scalar MDC. We conclude from our results that the method
is a practical and accurate method for designing two-channel MDC
optimized for the probability of packet erasure. Thus, if information
about network capacity and channel quality is available, then this
can be used to perform real-time optimization of coders employing
resolution-constrained MDC.
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