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ABSTRACT

Practical schemes for distributed video coding with side information
at the decoder need to consider non-standard correlation models in
order to take non-stationarities into account. In this paper we in-
troduce two correlation models for Gaussian sources, the Gaussian-
Bernoulli-Gaussian (GBG) and the Gaussian-Erasure (GE) models,
and evaluate lower and upper bounds on their rate-distortion func-
tions. Provided that the probability of impulse noise or of erasures
remains small, these bounds remain close to the rate-distortion func-
tion for Gaussian correlation. Two practical schemes for the GE cor-
relation model are also presented, with performance about 1.5 dB
away from the lower bound.

Index Terms— Source coding, rate-distortion theory, Wyner-
Ziv coding

1. INTRODUCTION

Lossy source coding with side information available only at the de-
coder [1, Sec. 14.9], also known as Wyner-Ziv (WZ) coding, has
received growing attention in the past years, as shown by the num-
ber of practical schemes that have been proposed. These schemes
are mainly designed either for binary source X and side information
Y , or for Gaussian correlation between continuous source and side
information, see, e.g., [2, 3, 4]. In practical schemes as video coders
exploiting WZ concepts [5, 6] the decoder builds the side informa-
tion using, e.g., extrapolation of previously decoded frames or inter-
polation of key frames. As a result, the Gaussian correlation model
in the pixel or in the transform domain is not too accurate when, e.g.,
occlusions occurs, or when new objects appear. This may lead to an
increase in the data rate needed to recover X given Y at the decoder.

In this paper we consider two alternative correlation models,
the Gaussian Bernoulli-Gaussian (GBG) and the Gaussian-Erasure
(GE). GBG correlation models the difference Y − X as a mixture
of a small-variance Gaussian noise and a large-variance Gaussian
noise, the latter being switched on and off by a Bernoulli process
[7]. GBG correlation is a good candidate to represent the correlation
between the frame being encoded and the side information obtained
by interpolation: some pixels may be well predicted, whereas others
have poor prediction, e.g., when an occlusion occurs.

GE correlation is a standard Gaussian correlation model where
the side information may be absent for some source samples. It is
a good candidate to model the correlation between the frame being
encoded and the side information extrapolated (with motion estima-
tion) from previous frames: areas where no side information is avail-
able may appear, for example when the camera is moving.

These models bear a similarity with the Heegard and Berger
problem [8, 9], which considers efficient coding when side informa-
tion may or may not be available at the decoder. The main difference
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and difficulty here is the fact that the sample positions for which the
side information is degraded or absent are random. For GE corre-
lation the problem is simpler, since the decoder knows the erasure
positions.

GBG and GE correlation models are formally described in
Section 2, before computing lower and upper bounds on the rate-
distortion function. Two practical schemes for the GE case are
presented in Section 3, with simulation results in Section 4. The
connection to distributed compressed sensing is detailed in Sec-
tion 5, before ending with some conclusions and perspectives.

2. MODELS AND BOUNDS

Let {Xj , Yj}∞j=1 be a sequence of independent drawings of a pair

of correlated continuous random variables (X,Y ). Assume X ∼
N (0, σ2

x ). The correlation is defined assuming a memoryless chan-
nel between X and Y .

In the proposed GBG model the correlation channel is affected
by the sum of Gaussian noise Gg ∼ N (0, σ2

g ) and of Bernoulli-
Gaussian noise. Bernoulli-Gaussian noise consists of the product of
a Bernoulli process B with parameter p and Gaussian noise Gi ∼
N (0, σ2

i ). It is assumed that σ2
g � σ2

i . The GBG correlation chan-
nel is then defined by

YGBG =

j
X +Gg with probability (1− p),
X + (Gg +Gi) with probability p.

(1)

In the proposed GE model, the correlation channel is still af-
fected by Gaussian noise Gg ∼ N (0, σ2

g ). The Bernoulli process
now models the occurrence of erasures on the correlation channel.
The GE correlation channel is defined by

YGE =

j
X +Gg with probability (1− p),
Δ with probability p.

(2)

The next two sections present lower and upper bounds on the
WZ rate-distortion function for both models.

2.1. Lower bounds

Consider the MSE distortion measure, and let D be the target dis-

tortion between the source X and its reconstruction bX . Intuitively,
the rate required by the system can be lower-bounded by assuming
that the encoder knows the locations of the samples affected by im-
pulse noise (GBG model) or erased (GE model). This results in a
setup similar to [9], with partial side information B (the positions of
the erasures or impulses) available at both encoder and decoder. The
encoder works in a time-division regime governed by B, employing
in each fraction of the time the minimum rate required to match the
global distortion constraint D.

For D ≤ σ2
g the optimal rate allocation results in equal distor-

tions for both fractions of time. Thus for the GBG correlation model
the optimal encoder operates on the Gaussian WZ rate-distortion
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function RX|Y,σ2
g
(D) for noise of variance σ2

g for a fraction (1− p)

of the time, and on the WZ rate distortion function RX|Y,σ2
g +σ2

i
(D)

for a noise of variance σ2
g + σ2

i for the remaining:

RGBG(D) = (1− p) RX|Y,σ2
g
(D) + p RX|Y,σ2

g +σ2
i
(D). (3)

A tighter lower bound may be obtained using the approach in [10],
where it is assumed that only the receiver knows B (it will only be a
lower bound, since in the GBG correlation model neither the sender
nor the receiver know B).

Similarly, for the GE correlation model the encoder operates on
the Gaussian WZ rate-distortion function for noise of variance σ2

g

for a fraction (1 − p) of the time, while it sends full rate for the
description of X for the remaining:

RGE(D) = (1− p) RX|Y,σ2
g
(D) + p RX(D). (4)

For D > σ2
g some rate needs to be spent only where impulses or

erasures are present in the correlation. The minimum rate required
is then RGBG = p RX|Y,σ2

g +σ2
i
(Di) for the GBG model, and RGE =

p RX(Di) for the GE model, where Di has to satisfy the constraint
D = pDi+(1−p)σ2

g . For target distortionD > σ2
g the lower bound

in figure 1 was determined numerically using reverse water-filling.

2.2. Asymptotic upper bound (high-rate analysis)
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Fig. 1. Theoretical scheme.

In order to obtain an upper bound on the rate-distortion func-
tion for a given target distortion D ≤ σ2

g one may consider the
theoretical scheme in Figure 1 and assume high-rate regime. The
source is scalar-quantized with step ψ, then Slepian-Wolf encoded
[1, Sec. 14.8] and sent to the receiver. We assume an ideal Slepian-
Wolf encoding scheme with vanishing probability of decoding error.
Thus for the GBG correlation model an upper (achievable) bound is,
for D = ψ2/12,

RGBG = H(U |Y ) = h(X|Y )− log2 ψ
≤ (1−p)h(X|Y,B=0)+p h(X|Y,B=1)+H(B)−log2 ψ

where h(X|Y ) denotes the conditional differential entropy. Simi-
larly, for the GE model the upper bound for D = ψ2/12 is

RGE = H(U |Y ) = h(X|Y )− log2 ψ
= (1− p)h(X|Y �=Δ) + p h(X|Y =Δ)− log2 ψ.

Figure 2 shows upper and lower bounds obtained for the GBG
and GE correlation models for p = 0.05, σx = 1, σg = 0.2, σi = 1.
The figure also shows that for a GBG or a GE correlation model with
small p a performance comparable to standard Gaussian correlation
may be obtained.

3. PRACTICAL SCHEMES FOR GE CORRELATION

The remainder of the paper focuses on practical schemes for the GE
model. They may be extended to the GBG model, with more sophis-
ticated impulse correction tools, see Section 6.
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Fig. 2. Lower and upper bounds of the rate-distortion functions
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Fig. 3. Practical scheme for GE model

3.1. Single-layer scheme

A single-layer scheme for both correlation models may be obtained
following the ideas presented in Section 2.2 for evaluating the rate-
distortion upper bound. By scalar quantization of the source and the
side information with the same quantization step ψ one obtains dis-
crete versions of the source and the side information, which are still
correlated. The correlation may be represented by a discrete memo-
ryless channel. For large values of ψ many quantization indexes will
be equal. Only the entries affected by impulse noise or erased will
be different. The indexes may then be efficiently encoded using a
Slepian-Wolf scheme, such as [11].

The main disadvantage of this scheme is that it is intrinsically
linked to scalar quantization. Using a vector quantizer would, for
a cell size comparable to the one of the cubic lattice, increase the
number of indexes which are different, and thus increase the rate on
the channel without decreasing the distortion.

3.2. Two-layer scheme

The two-layer encoding scheme for GE correlation depicted in Fig-
ure 3 is proposed as an alternative to the single-layer scheme. Both
layers operate on blocks of N i.i.d. source samples. Layer 1 aims
to produce a coarse estimation of the source, X̃ , compensating for
the entries erased by the correlation channel. Layer 2 regards X̃ as
side information, employing standard Wyner-Ziv coding techniques
to provide the finer estimate X̂ within target distortion per source
symbol D. The rate required by the system is R = R1 + R2 bits
per source symbol. Let X ∼ N (0, σ2

xIN ) be the source sequence,
G ∼ N (0, σ2

gIN ) the Gaussian noise sequence, and Y ′ the partially
erased side information sequence.

Layer 1 encoder consists of a precoding block followed by a
quantizer. The aim of precoding is to reduce the dimension of the
sequence to be conveyed by a factor N−K

N
, while preserving the in-

formation needed to estimate the erased entries. Precoding consists
in applying some linear transform H(N−K)×N , whose rows are re-
quired to be orthonormal. The output of the precoder, S = H ·X ,
is distributed as N (0, σ2

xIN−K); each sample is quantized using a

uniform quantizer. For values R1 > (N−K)
N

· 2.5 bits, the rate on
Layer 1 for target distortion Dq per source sample is well approxi-
mated by the high-rate expression

R1(Dq) =
N −K

N

„
1

2
log2

`
2πeσ2

x

´− 1
2
log2 (12Dq)

«
(5)
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bits per source sample, see [12]. The quantization indexes are then
Slepian-Wolf encoded.

The same transformation and quantization are applied to the side
information at the decoder to reconstruct the quantized transformed
samples. Using the transmitted bits it is possible to recover an esti-
mate of S. The decoder exploits all the information available on the
source sequence to produce the estimate X̃ . The observation vector
is expressed as

A =

»
S

V · Y
–
=

»
H
V

–
·X +

»
Q

V ·G
–
= F ·X +Z , (6)

where V(N−ν)×N is obtained from IN by eliminating the ν lines cor-
responding to the erased positions in Y ′, and Q is the quantization
noise vector; the covariance matrix of Z is

Γz =

»
DqIN−K 0
0 σ2

gIN−ν

–
. (7)

The distortion per source symbol on Layer 1 output is

D1 =
1

N
E[‖ X − X̃ ‖2] = 1

N
trace (Γx−x̃) , (8)

where Γx−x̃ = E[(X − X̃)(X − X̃)T ] is the covariance matrix
of the estimation error. Layer 2 may then use any Wyner-Ziv coding
scheme for Gaussian correlation. Here we consider nested scalar
quantization followed by a Slepian-Wolf coder, described in [4].
The output of the nested quantizer is the coset leader of the source
X , whose correlation with the side information X̃ is exploited to
achieve compression. As in [4] we assume theoretical Slepian-Wolf
rate. In order to match the distortion constraint D, Layer 2 requires
rate

R2 =
1

2
log2 (2πeD1)− 1

2
log2 (12D) (9)

bits per source sample.

The overall distortion per source symbol of the estimate X̂ is
derived from (5), (9), and (12) as

D(R1, R2) =
1

N

2πe

12
trace (Γx−x̃(R1)) 2

−2R2 . (10)

A MAP estimator is used, since it allows the estimation of X̃ even
when more than N −K samples are erased. Its expression is

X̃ = X̃MAP =
“
FTΓ−1

z F +K−1
x

”−1

FT ·A; (11)

the covariance matrix of the estimation error is

ΓMAP = E[(X̃MAP −X)(X̃MAP −X)T ] (12)

=
“
D−1

q (R1)H
TH + σ−2

g V TV +K−1
x

”−1

.

3.3. High-rate regime

The overall distortion (10) decreases as R2 increases; the depen-
dence on the rate R1 is related to (8) through the covariance matrix
Γx−x̂. Using (5) in (12) one obtains

ΓMAP =
“
α−12βR1HT IN−KH

T +Δ
”−1

, (13)

where α =
2πeσ2

x
12

, β = 2 N
N−K

> 0 andΔ = σ−2
g V TV + σ−2

x IN .

Using the matrix inversion lemma (13) becomes

ΓMAP = Δ
−1 −Δ−1HT

“
α2−βR1I +HΔ−1HT

”−1

HΔ−1.

(14)
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Fig. 4. Performance of Layer 1 (GE correlation)

For increasing R1, the term depending on R1 in (14) becomes neg-
ligible and the expression of ΓMAP becomes

ΓMAPs = lim
R1→+∞

ΓMAP

= Δ−1 −Δ−1HT
“
HΔ−1HT

”−1

HΔ−1. (15)

Thus, for R1 sufficiently large, but still finite, the asymptotic overall
distortion depends only on R2:

D(R1, R2) = D(R2) =
1

N

2πe

12
trace (ΓMAPs) 2

−2R2 . (16)

4. SIMULATIONS

We consider here the GE correlation model, with the same parame-

ters as in Section 2.2. The estimate eX for Layer 1 is obtained using
(11). H is obtained by extracting N − K rows of a size N dis-
crete Fourier transform matrix. The size N and the N − K rows
are chosen such that row i and row N − K + 1 − i are hermitian
symmetric. Thus, for a real-valued vector, after a multiplication by
H , only N −K real entries need to be transmitted.

Figure 4 shows the performance of Layer 1 of the coding scheme
in Figure 3, for N = 11, K = 7. For p = 0.05 the choice of
N − K = 4 provides enough information to estimate the erased
entries of the side information (the probability of having more than 4
erased entries per block is about 10−4). The influence of the increase
of R1 becomes negligible for R1 > 0.7 bits per source sample (after
ideal Slepian-Wolf encoding), as expected from (14).

Layer 2 is now appended to Layer 1 (R1 is fixed at 0.75 bits
per source sample). The performance of the entire coding scheme is
represented in Figure 5. The width of the coarse quantization cell is
taken as 4, in order to guarantee a vanishing probability of Wyner-
Ziv decoding error. The rate is the sum of R1 and the rate at the
output of the ideal Slepian-Wolf coder of Layer 2.

Figure 5 also shows the performance of the single-layer coding
scheme (ideal Slepian-Wolf encoding is also assumed in this case).
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At high rates, the single-layer and the two-layer schemes are respec-
tively about 0.9 dB and 1.4 dB away from the lower bound of the
rate-distortion curve. At lower rates, the gap between the single-
layer scheme and the two-layer scheme increases, since no optimiza-
tion of the rate allocation between the layers has been performed.
The performance of the two-layer scheme may be improved by us-
ing a more efficient Wyner-Ziv encoder in Layer 2 (vector quanti-
zation), which is not possible for the single-layer scheme. Never-
theless, some improvements of the single-layer scheme may also be
obtained with a better design of the scalar quantizer.

5. CONNECTIONS WITH COMPRESSED SENSING

We briefly outline how WZ schemes for GE and GBG correlation
can be used for compressed sensing (CS) [13, 14]. A bare bones ex-
ample of a CS problem is to compress a signal vector x ∈ R

N of
the form x = Ψu, where Ψ is an orthonormal N -by-N matrix and
u ∈ R

N has at most K non-zero components (we say that x is K-
sparse with respect to Ψ). The problem is to determine a compres-
sion mechanism for x when only the decoder knows the sparsifying
basis Ψ. Distributed CS (DCS) extends this paradigm to multiple
correlated signals, which may be composed of sparse and non-sparse
components, and have to be encoded independently [15].

In the simple case Ψ = IN , when x = u is directly sparse,
there is an immediate connection with the GBG model: model x
as a vector of i.i.d. samples of GBG noise with p = K/N and σ2

i

the variance of the sparse signal components, while σ2
g << σ2

i is
some background noise (this actually generalizes the concept of K-
sparsity). Then a CS scheme can be built using a GBG-WZ encoder
for i.i.d. X ∼ N (0, σ2

g + pσ2
i ). The decoder simply uses the trivial

side information Y = 0 to decode the quantized value x̂ (notice that
in this scheme, the roles of source and side information are reversed).

An extension to distributed CS is also possible, e.g., for model
JSM-3 in [15], which considers M distributed sources Xj = ZC +
Zj , where ZC is a possibly non-sparse common component and Zj

is an independent (form other sources) sparse innovation component.
Each sensor (source) then computes a two-part code: first, it applies

a standard quantizer of rate R1 to obtain X̂j . Second, it uses a rate

R2 WZ code for Xj given side information ẐC,j , which the decoder

computes from the X̂j as ẐC,j =
1

M−1

PM
i=1,i�=j X̂i. If component

Zj is modeled by independent realizations of GBG noise, a GBG-

WZ encoder can be used to encode Xj given side information ẐC,j .
The larger the number of sources M , the smaller the rate R1 needed

to reduce the noise on the side information, ẐC,j−ZC . If the Zj are
i.i.d. with the same GBG distribution, this noise will also be GBG,
with the same p and correspondingly scaled variances.

In the more general case, when x is sparse in a non-trivial basis
Ψ �= IN , this GBG-WZ approach can only be used if the codebook
is invariant under the rotation Ψ, which allows to encode without
knowing Ψ. This will be the case at high rates (D < σ2

g ), when
the optimal codebook is Gaussian and thus spherically symmetric.
The simple scheme with scalar nested quantization followed by SW
coding does not have this symmetry property; however, it is a useful
tool to overbound the optimal WZ rate-distortion performance.

6. CONCLUSIONS

We considered two new correlation models (GBG and GE) for the
problem of source coding with side information at the decoder, and
provided bounds on the rate-distortion function. Two practical en-
coding schemes have been proposed for the GE correlation model.
At high rate, the two schemes perform quite similarly and are about
1dB away from the lower bound on rate-distortion.

The main advantage of employing a two-layer scheme compared
to a single-layer scheme is that it allows to use more sophisticated

Wyner-Ziv coding techniques, e.g., TCQ followed by LDPC-based
stage. Moreover, it may be much more profitable in the case of a
colored correlation noise G: the single-layer scheme is restricted to
a scalar quantizer, whereas the second layer of the two-layer scheme
may use a vector quantizer to efficiently encode G. Finally, the two-
layer scheme is easily adaptable to varying erasure probability p,
since the second layer will not be affected.

A similar two-layer scheme may be used for the GBG correla-
tion model. The first layer, at decoder side, needs to estimate the
number, locations and amplitudes of the impulse noise spikes. Tech-
niques used in compressed sampling may be used for that purpose
[13, 14]; decoding techniques for BCH codes on the real field may
also be efficiently put at work [7].
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