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ABSTRACT

Despite the popularity and importance of linear dispersion (LD)
codes, precoding for LD codes has rarely been investigated. In
this paper we propose a method for designing a precoder codebook
for LD codes in spatially and temporally correlated channels. Our
codebook consists of two parts: a unitary codebook and a diagonal
codebook. We propose a systematic algorithm for a unitary code-
book design because unitary codebooks are hard to generate using
numerical optimization methods. For each column (starting with
the first column), we generate a set of vectors in the null space of
previous columns. These vectors are generated by skewing i.i.d.
unit vector codebooks by means of channel statistics-dependent
transformations. A diagonal codebook is generated using a vector
quantization technique. We use mutual information as a design cri-
terion throughout this paper. Numerical results illustrate the benefits
of matching a codebook to channel statistics and employing adaptive
power shaping.

Index Terms— MIMO systems, feedback communication, lin-
ear dispersion code, precoding.

1. INTRODUCTION

Adapting transmit signals to channel statistics and/or channel states
can significantly improve the capacity and error performance of
wireless communication systems. Since the feedback channel is
rate-limited, the transmitter should either rely on slowly-varying
channel statistics or obtain the limited information on channel states
efficiently – in the latter case, the feedback is typically in the form
of the index of a chosen beamforming vector or precoding matrix in
the codebook agreed a priori by both transmitter and receiver.

Existing works can be categorized by two dimensions: trans-
mission scheme, e.g. beamforming, orthogonal space-time block
codes (oSTBCs) and linear dispersion (LD) codes [1]; and the form
of feedback, e.g. perfect feedback, statistical feedback, and lim-
ited (channel state) feedback. There has been substantial research
on feedback schemes for beamforming and orthogonal space-time
block codes (refer to [2] for a list of existing work.) However, LD
codes have been rarely investigated regarding the exploitation of the
feedback resources.

In this paper we propose a precoder codebook design method
for LD codes (Threaded Algebraic Space Time codes [3], in partic-
ular) in spatially and temporally correlated Rayleigh fading MIMO
channels with average mutual information as a design criterion. We
divide the codebook design task into the design of a unitary code-
book, which is related to (generalized) beam directions or eigendi-
rections, and a diagonal codebook, which specifies the power load-
ing to each direction. There are two key contributions of this work:

(i) we propose an algorithm for systematic construction of a unitary
codebook matched to spatial channel correlation, and (ii) we prove
that the channel statistics-specific transformation in (7) proposed by
other researchers (without a rigorous justification) indeed tweaks a
codebook of unit vectors for i.i.d. channels into the one whose dis-
tribution is the same as the probability density function (pdf) of the
normalized MISO channel vector.

Boldface lowercase and uppercase alphabets denote column vec-

tors and matrices, respectively. ||a|| �
√

a†a is the �2-norm. Super-
scripts (·)T , (·)∗ and (·)† represent transpose, conjugate, and con-
jugate transpose, respectively. A ∼ CN (M,R) means that A is

complex Gaussian-distributed with mean M � E[A] and variance

R � E[vec(A − M)vec(A − M)†], where vec(A) is the column-

stacking operator, i.e. vec([a1 a2 · · · aN ]) � [aT
1 aT

2 · · · aT
N ]T . ⊗

denotes the Kronecker product and vand(·) represents the Vander-
monde matrix, i.e. [vand(a)]p,q = aq−1

p .

2. SYSTEM MODEL

We consider precoder codebook design for feedback-aided adaptive
point-to-point communication systems. We consider narrow-band
Rayleigh fading channels with Mt transmit and Mr receive anten-
nas. The channel is assumed to be quasi-static, i.e. it is constant
during the transmission of a space-time block of length L, and then
transitions into a new state according to a temporal correlation model
that appears shortly. Denoting the symbol duration by Ts, the block
duration LTs is typically very small, so the quasi-static assumption
is valid. However we should take temporal correlation into account
when the feedback delay τ � LTs is considered. We assume that
the channel realization as well as the channel statistics, i.e. channel
covariance matrix, is perfectly known at the receiver, but the trans-
mitter knows the channel statistics only. Hence, the receiver selects
which precoding matrix the transmitter should use after τ seconds
of delay based on the channel realization at time t0, H(t0), and the
channel statistics. The index k ∈ {1, 2, . . . , 2b} of the selected ma-
trix is conveyed to the transmitter via an error-free feedback channel,
where b is the number of available feedback bits.

Let S denote the Mt×L transmit signal matrix with E[tr(SS†)] =
L, N the Mr × L noise matrix following CN (0, I), and Wk the

Mt×Mt precoding matrix chosen by the receiver with tr(WkW
†
k) =

Mt. We assume Rayleigh fading channels, that is, the Mr × Mt

channel matrix H follows CN (0,R), where R � E[vec(H)vec(H)†]
is the channel covariance matrix. Now the signal received between
t = t0 + τ and t = t0 + τ + LTs can be written as

Y(t0 + τ) =
√

EsH(t0 + τ)WkS(t0 + τ) + N(t0 + τ) (1)

where Es denotes the transmit SNR.
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2.1. Temporal Correlation Model
The channel varies over time due to the mobility of the transmit-
ter, receiver and/or scatterers. Hence we are interested in modeling
H(t0 + τ), the channel state τ seconds after the channel was esti-
mated as H(t0) at time t0. If the delay is close to zero, H(t0 + τ)
will be close to H(t0). If the delay is large, H(t0) will bear little
information about H(t0 + τ) and the only useful information will
be the statistics of the channel. Hence the temporal variation is often
modeled as [4]

H(t0 + τ)|H(t0) ∼CN
(
J0(fDτ)H(t0), (1 − J0(fDτ)2)R

)
,

(2)

where J0(·) is the zero-th order Bessel function of the first kind with
J0(0) = 1 and J0(∞) = 0, and fD is the Doppler spread at t0.
It can be easily checked that when fDτ is close to zero, H(t0 +
τ)|H(t0) ∼ CN (H(t0),0), while as fDτ tends to ∞, H(t0 +
τ)|H(t0) ∼ CN (0,R), as desired.

3. PRECODING WITH INFINITE-RATE FEEDBACK

We investigate the infinite-rate feedback case in this section in order
to get insight on precoder codebook design, and then consider the
finite-rate feedback case in the next section.

Pairwise error probability (PEP) is a widely used design crite-
rion for constructing precoder codebooks for oSTBCs because in this
case the worst-case PEP has a simple expression, which represents
block error rate reasonably well using the union bound technique.
Unfortunately, this is not the case for LD codes where PEP has to be
evaluated for thousands or more pairs in order to obtain an approxi-
mate block error rate. Hence, mutual information is commonly used
as a design criterion [1, 5, 4].

LD codes are written in the form of S =
∑N

�=1 A�a�, where

{a�}N
�=1 are i.i.d. complex source symbols taken from a constella-

tion and {A�}N
�=1 is a set of Mt×L complex dispersion matrices [1].

It is often convenient to write the system equation (1) in a column-
stacked form as

vec(Y) =
√

EsHWG̃a + vec(N) (3)

where G̃ � [vec(A1) . . . vec(AN )], a � [a1 . . . aN ]T , H �
IL ⊗H, W � IL ⊗W. The MtL×N matrices G̃ and G � WG̃
are the generator matrix of an LD code and a precoded LD code,
respectively. Note that we dropped the subscript k from precoding
matrices because in this section we consider the infinite-rate feed-
back scenario.

When only channel statistics are known at the transmitter, [5]
showed that the generator matrix of capacity-achieving LD codes
should satisfy the equation GG† = IL ⊗ VtΛoptV

†
t , where Vt

is the eigenmatrix of the transmit covariance matrix Rt � E[H†H]
and Λopt is a diagonal matrix with nonnegative entries. This ex-
treme case serves as a reference in appraising the gain achieved by
feedback.

The other extreme case is when channel realizations are instan-
taneously known at the transmitter. In this case, it is well known that
the optimal input covariance matrix is VHΛoptV

†
H , where VH is

the right singular matrix of H = UHΛHV†
H . Hence the generator

matrix should satisfy the equation GG† = IL ⊗ VHΛoptV
†
H .

Now we consider a general case where the transmitter knows
the channel statistics as well as channel realizations but with τ sec-
onds of feedback delay. Applying Jensen’s inequality yields the up-
perbound of average mutual information conditioned on the channel

realization H(t0) [4]

I =E[log det(IMt + EsQH(t0 + τ)†H(t0 + τ))]

≤ log det (IMt + EsQΦ(H(t0),Rt)) , (4)

where Φ(H(t0),Rt) � E[H(t0 + τ)†H(t0 + τ)] = J0(fDτ)2

H(t0)
†H(t0) + (1 − J0(fDτ)2)Rt follows from (2). Here the

expectations are with respect to the distribution of H(t0 + τ) condi-
tioned on H(t0). The optimal input covariance Q that maximizes (4)

subject to tr(Q) ≤ L is known to be Qopt = VΦΛoptV
†
Φ, where

VΦ is the eigenmatrix of Φ(H(t0),Rt) = VΦΛΦV†
Φ. We can

obtain Λopt via waterfilling as [Λopt]�,� = (μ − 1/(Es[ΛΦ]�,�))
+,

� = 1, 2, . . . , Mt, where (·)+ = max(·, 0) and μ is chosen such
that Qopt satisfies the trace constraint. Hence the optimal generator
matrix should satisfy

GG† =IL ⊗ VΦΛoptV
†
Φ. (5)

We focus on LD codes that satisfy G̃G̃† = IMtL. It can be
easily shown that TAST codes [3] satisfy this property and we use
this code in our simulation. Due to this property, we have GG† =
IL ⊗ WW†, and by choosing W appropriately the LD codes can
be made near capacity-optimal.

4. PRECODING WITH FINITE-RATE FEEDBACK

We propose an algorithm for designing a finite codebook of precod-
ing matrices for LD codes such that the optimal GG† in (5) can be
closely approximated by a precoding matrix in the codebook. Nu-
merical optimization [2] is not well-suited for this task because of
the lack of a simple worst-case PEP expression and large number of
optimization variables. To elaborate further, write the precoding ma-
trix Wk, k = 1, . . . , 2b, in the singular value decomposition form
Wk = ŨkD̃kV0. Now D̃k can be specified by Mt − 1 real pa-
rameters, which is relatively small, but Ũk requires M2

t − Mt real
parameters, which becomes very large even with a moderate number
of antennas [2]. Hence we divide the codebook design task into the

design of a unitary codebook {Un}2bU
n=1 and that of a diagonal code-

book {Dm}2bD
m=1, where bU and bD are the number of feedback bits

allocated to the unitary codebook and the diagonal codebook, respec-
tively, satisfying bU +bD = b, the total number of available feedback
bits. We then construct the unitary codebook systematically, while
generating the diagonal codebook using a vector quantization tech-
nique. Any choice of the unitary matrix V0 does not affect mutual
information, but it does affect the error performance. We arbitrarily
chose the following structure to allow a single parameter optimiza-
tion, and this parameter β can be found by an exhaustive search such
that it yields the best average PEP for a number of pairs of transmit
signal matrices. For Mt = 4 and BPSK constellation, the best β
for V0 = (1/

√
Mt)vand([ejβ ej(β+π/2) ej(β+π) ej(β+3π/2)]T ) is

found to be 0.97.

4.1. Systematic Unitary Codebook Design
We now present a unitary codebook design method. The key idea is
that we can construct a set of unitary matrices by successively filling
columns, one column after another, with a set of vectors that are not
only orthogonal to previous columns but also matched to the spatial
correlation of the channel.

To the best of our knowledge, there is no known algorithm for
systematically generating a codebook of unitary matrices matched to
channel statistics. The idea of skewing an i.i.d. codebook of beam-
forming vectors based on the channel covariance matrix has been
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Fig. 1. Effect of the transform in (7) on the distribution of codeword
vectors. Dots represent vectors in an i.i.d. unit vector codebook (left
sphere) and a transformed codebook (right sphere).

proposed by a few authors, but the proposed skewing method was
not justified mathematically. In [6], the authors propose an algo-
rithm for the systematic construction of a codebook of unitary ma-
trices for i.i.d. channels, but that is not easily extendable to cor-
related channels. For spatially correlated channels the problem is
very difficult because the pdf of VΦ, which should be the left sin-
gular matrix of W in order to satisfy (5) in the infinite-rate feed-
back case, is not known. In fact, the pdf of VΦ is an open prob-
lem even for the simpler case of J0(fDτ) = 1 and we only know
that in the limit of the number of receive antennas, the first col-
umn of VΦ is close to the dominant statistical eigendirection vt,1 of

Rt = VtΛtV
†
t =

∑Mt
�=1[Λt]�,�vt,�v

†
t,� with high probability [7].

When the number of receive antennas is finite, we conjecture that
the distribution of VΦ depends on Rt in a fashion that the first col-
umn of VΦ lies around the stronger statistical eigendirections such
as vt,1 more often than around the weaker statistical eigendirections
such as vt,Mt .

When Mr = 1 and fDτ = 0, we can compute the pdf of VΦ.
In this case, we can see that Φ(h(t0),Rt) is rank 1, and hence the
diagonal entries of ΛΦ and Λopt are zero except for the first di-
agonal entry. (We used different notation h(t0) replacing H(t0)
because the channel is now a vector, not a matrix.) This implies
that GG† in (5) is determined by the dominant eigenvector vΦ,1

of Φ(h(t0),Rt) (other eigenvectors correspond to zero eigenvalues
and are irrelevant) and that we only need to design a set of vectors

for the first column of {Un}bU
n=1 such that the distribution of those

vectors is matched to the distribution of vΦ,1. Note that vΦ,1 is just

the right singular vector h̃(t0)
T of the 1×Mt channel vector h(t0)

T

and we can derive the pdf of vΦ,1. (Due to the page limit, the proofs
of the lemmas are not provided.)

Lemma 1 Denote a MISO channel by h(t0)
T ∼ CN (0,Rt). The

right singular vector h̃(t0)
T of h(t0)

T is simply h(t0)
T /||h(t0)

T ||.
Then the pdf of h̃(t0) is

P (h̃(t0)) = (Mt − 1)!/2πMt |Rt|(h̃(t0)
†R−1

t h̃(t0))
Mt . (6)

Interestingly, it is possible to generate a codebook of unit vectors
whose distribution is identical to (6) simply by skewing a reference
codebook of unit vectors designed for i.i.d. channels. Consider
the following transformation which maps an Mt-dimensional vec-
tor c = [c1 c2 . . . cMt ]

T into u of the same dimension

u =

Mt∑

�=1

c�[Λt]
1/2
�,� vt,�/||

Mt∑

�=1

c�[Λt]
1/2
�,� vt,�||. (7)

Recall that vt,� and [Λt]�,� are the �-th eigenvector and eigenvalue

of Rt = VtΛtV
†
t , respectively. Observe that vt,� functions as a

new basis vector and the square root of [Λt]�,� as a weighting factor.

(4)
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Fig. 2. An example of a unitary codebook of 16 matrices designed
with b1 = 2, b2 = b3 = 1, b4 = 0 bit(s).

Indeed, the next lemma shows that this transformation tweaks an
i.i.d. unit vector codebook into a codebook whose distribution is
the same as (6). See Fig. 1 for an illustration of the distribution of
vectors before and after the transformation.

Lemma 2 The Jacobian determinant of the transformation in
(7), when viewed as a mapping from R

2Mt into itself, is J =
|Λt| ||c||2Mt(u†R−1

t u)Mt . Hence if c is uniformly distributed on
the surface of a unit sphere, then the pdf of u is

P (u) =P (c)/J = 1/A|Λt|(u†R−1
t u)Mt (8)

where A = 2πMt/(Mt − 1)! is the surface area of a unit sphere.

Observe that (8) is exactly same as (6). So far we have shown that
we can generate a unit vector codebook matched to spatial chan-
nel correlation by skewing an i.i.d. unit vector codebook. Building
upon this result, we now present a unitary codebook design algo-

rithm. First, note that the columns on the left side of {Un}2bU
n=1 are

more important than the ones on the right side. For example, the first
column of Un ≈ VΦ corresponds to the strongest eigenvector of
Φ(H(t0),Rt), and it is loaded with more power than other columns
because it corresponds to the largest eigenvalue [Dm]1,1. Hence we
construct a unitary codebook filling column after column allocating
more resource (feedback bits) to the left columns. That is, if b� de-
notes the number of feedback bits allocated to the �-th column, we
choose {b�}Mt

�=1 such that b1 ≥ b2 ≥ · · · ≥ bMt−1 ≥ bMt = 0 and∑Mt
�=1 b� = bU . Second, for unitariness, a vector in the �-th column

u(�) should be orthogonal to previous columns, u(1), . . . ,u(�−1).
The following is the procedure for constructing a unitary codebook.
Step 1: We need to generate 2b1 unit vectors that will be used in

the first columns of {Un}2bU
n=1. These vectors should represent the

first column of the random matrix VΦ reasonably well. As dis-
cussed in the beginning of Section 4.1, we expect that the first col-
umn of VΦ has a higher pdf along the statistically dominant trans-
mit eigendirections such as vt,1 than the weaker directions such as
vt,Mt . Hence we use the transformation in (7) to skew each vector in

an Mt-dimensional i.i.d. unit vector codebook {c(1)
n }2b1

n=1 to obtain

{u(1)
n1 }2b1

n1=1.

2935



Step 2: Next we generate 2b2 unit vectors that will be used in

the second columns of {Un}2bU
n=1. For unitariness, these vectors

should be orthogonal to the first column and hence we should
have one unit vector codebook of cardinality 2b2 for each vec-

tor in {u(1)
n1 }2b1

n1=1. This property makes a unitary codebook
look like a tree as illustrated in Fig. 2. Due to the orthogo-

nality constraint, we need to slightly modify (7) as u
(2)
n1,n2 =∑Mt−1

�=1 [c
(2)
n2 ]�[Λ

(2)
t ]

1/2
�,� v

(2)
t,� /||∑Mt−1

�=1 [c
(2)
n2 ]�[Λ

(2)
t ]

1/2
�,� v

(2)
t,� ||,

where v
(2)
t,� and [Λ

(2)
t ]�,� are the �-th eigenvector and eigenvalue

of the projected transmit covariance matrix P(n1)RtP(n1). Here

P(n1) = IMt − u
(1)
n1 u

(1)†
n1 is a matrix projecting a vector onto

the null space of u
(1)
n1 , and {c(2)

n }2b2
n=1 is an (Mt − 1)-dimensional

i.i.d. unit vector codebook. Proceed in a similar fashion until all the
columns are provided with a set of vectors.

Working with i.i.d. unit vector codebooks whose first vector is
[1 0 . . . 0]T , we get U1 = Vt, meaning our codebook contains a
matrix that a statistical feedback scheme uses, regardless of bU .

4.2. Diagonal Codebook Design
Because each Dm, m = 1, . . . , 2bD , is characterized by only Mt

positive diagonal entries, we can adopt vector quantization tech-
niques such as LBG-based algorithms [2]. We first randomly gen-
erate a large number of channel realizations {H(t0)}. For each
channel realization, we compute Φ(H(t0),Rt) and find the optimal
power shaping matrix Λopt in (5). We use the vectors consisting of
the diagonal entries of {Λopt} as a training set for a vector quanti-
zation algorithm. The resulting representative vectors constitute the

diagonal entries of {Dm}2bD
m=1.

5. SIMULATION

We present the block error rate performance of precoded full-rate
LD codes with Mt = Mr = L = 4 to demonstrate the benefits
of the proposed algorithm. We use TAST codes T4,4,4 [3] for our
LD codes. Symbols are taken from the BPSK constellation, and ML
decoding is performed by the sphere decoder. In generating random
spatially correlated channel realizations, we use the virtual channel
model [5], H = VrHcV

†
t , choosing the DFT matrix as Vr =

Vt. The entries of Hc, [Hc]p,q , are independent and distributed as
CN (0, σ2

p,q) with σ2
p,q = 1 for q = 1, 0.5 for q = 2, 0.2 for q = 3,

and 0.1 for q = 4, regardless of p. For temporal correlation, we
choose Doppler spread fD = 30 Hz and delay τ = 2 ms.

Fig. 3 shows that at 10−3 block error rate level, infinite-rate
feedback yields 2.4dB gain over the no precoding case, i.e. W = I.
Using 12 bits of feedback, (b1, b2, b3, b4, bD) = (6, 2, 0, 0, 4), we
get 1.8dB gain over the no precoding case, while statistical feedback
reaps only 0.9dB gain. Comparison of the ‘bU = ∞ bits, bD = ∞
bits’ curve with the ‘bU = ∞ bits, bD = 0 bit’ curve reveals the im-
portance of adaptive power shaping. The curve labeled ‘bU = 8 bits,
bD = 4 bits (iid {Un})’ is to illustrate that a unitary codebook that
does not take spatial correlation into account, i.e. using 1 in place of

[Λt]
1/2
�,� ∀� in (7), receives a penalty of about 0.4dB compared with

the same size codebook that follows (7). The curve labeled ‘Statisti-
cal Feedback (V0 = I)’ corresponds to choosing I as the common
right singular matrix V0 of Wk, instead of V0 given in Section 4.

6. CONCLUSION

We proposed a precoder codebook design method for LD codes in
spatially and temporally correlated channels, breaking the task into
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Fig. 3. Block error rate comparison of different feedback schemes

the unitary codebook design part and the diagonal codebook design
part. We have proposed a systematic method for generating a code-
book of unitary matrices matched to spatial correlation which are
hard to obtain numerically due to the huge number of optimiza-
tion variables. Simulations of block error rates of different feedback
schemes show that the limited feedback scheme using the proposed
method can achieve a significant portion of the gain that an infinite-
rate feedback scheme achieves.
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