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ABSTRACT
We consider a at fading wireless link having multiple M trans-
mitter antennas and a single receiver antenna (MISO). This system
is often useful in mobile downlink communications for which the
mobile receiver may not be able to support multiple antennas. For
such a system, we propose a novel and very simple design of full
diversity two-group and four-group decodable block diagonal lin-
ear dispersion codes with rate one for any number of the transmit-
ter antennas. For M = 2n and M = 2n − 1, we also prove that
for K-ary Quadrature Amplitude Modulation (QAM) transmission
equipped with a maximum likelihood (ML) detector, our proposed
code minimizes the worst case average pair-wise error probability,
i.e., it achieve optimal coding gain.

Index Terms— Multiple-input single-output systems, space-
time block codes, full diversity, group-decodable, Maximum like-
lihood detection.

1. INTRODUCTION

Over the past several years, various space-time block coding (STBC)
schemes have been developed to take advantage of the MIMO com-
munication channel. In this paper, we consider a coherent commu-
nication system equipped with multiple transmitter antennas and a
single receiver antenna, i.e., a MISO system. These systems are of-
ten encountered in mobile downlink communications for which the
mobile receiver may not be able to support multiple antennas. For
such a system, orthogonal STBCs [1–4] are attractive, since they
can provide the maximum diversity using a linear processing maxi-
mum likelihood detector. However, they have a limited transmission
rate [5, 6] and thus, do not achieve full MIMO channel capacity [7]
if the number of the transmitter antennas is greater than two. To im-
prove the low rate, quasi-STBCs [8–10] with constellation rotation
or linear transformations and the diagonal STBC [11] have been pro-
posed. In order to simplify the complexity of maximum likelihood
detection, multi-group decodable STBCs [12–14] have been devel-
oped. Recently, Toeplitz STBCs [15] for a MISO system equipped
with a zero-forcing (ZF) receiver have been designed enabling the
optimal tradeoff of diversity and multiplexing gains [16]. In this pa-
per, we propose a novel and very simple design of two-group and
four group decodable block diagonal linear dispersion codes by tak-
ing advantage of the Alamouti code [1] and the full diversity rotation
matrices.

Notation: Throughout this paper, we use the following notation:
Matrices are denoted by uppercase boldface characters (e.g.,A), and
column vectors are denoted by lowercase boldface characters (e.g.,
b). The i-th entry of b is denoted by bi. The columns of anM ×N
matrix A are denoted by a1, a2, · · · ,aN . The transpose and Her-
mitian transpose ofA are denoted byAT andAH respectively. The

(i, j)-th entry of A is denoted by [A]i,j . Are and Aim denote ma-
trices consisting of the real and imaginary parts of A, respectively.
M denote the number of transmitter antennas; Notation IK denotes
theK × K identity matrix.

2. CHANNEL MODELWITH LINEAR DISPERSION
CODING

Consider a coherent at fading multiple input single output (MISO)
wireless communication system havingM transmitter antennas and
a single receiver antenna. For each time slot (usually called a “chan-
nel use”), each of the M transmitter antennas is fed a coded sym-
bol for transmission. Each of these transmitter antennas is linked
to the receiver antenna through a channel hm, m = 1, · · · , M .
At the receiver of such a system, for time slots n = 1, · · · , N ,
we receive an N -dimensional signal vector y = [y1 y2 · · · yN ]T

which, according to the input-output model of the system, can then
be written as y =

√
ρ
M

X(s)h + ξ where X is the N × M lin-
ear dispersion (LD) coding matrix each row of which consists of
coded symbols fed to the M transmitter antennas during a partic-
ular time slot, h is an M × 1 channel vector, and ξ is an N × 1
complex noise vector. Throughout this paper, we make the follow-
ing assumptions: 1) The channel h is circularly-symmetric complex
Gaussian distributed, with zero-mean and covariance matrix IM ; 2)
ξ is a circularly-symmetric complex Gaussian noise vector with vari-
ance IN .

2.1. Code design

In the following, we suggest two constructions of codes for complex
signals: the rst design applies a complex rotation matrix directly
to the complex signal, and the second applies real rotation matrices
separately to the real and imaginary parts of the signal.

2.1.1. Block-diagonal complex orthogonal (BDCO) code design

(1) The number of the transmitter antennas is even; i.e., M = 2L.
LetCe be an L × L full diversity rotation matrix [17–19], and

⎛
⎜⎜⎜⎝

x1 xL+1

x2 xL+2

...
...

xL x2L

⎞
⎟⎟⎟⎠ = Ce

⎛
⎜⎜⎜⎝

s1 sL+1

s2 sL+2

...
...

sL s2L

⎞
⎟⎟⎟⎠ . (1)

If we use A(xi, xL+i) to denote the Alamouti space-time code
formed by two symbols xi and xL+i for i = 1, 2, · · · , L, then, our
code is constructed by

X(s) = diag(A(x1, xL+1),A(x2, xL+2), · · · ,A(xL, x2L)) (2)
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(2) The number of the transmitter antennas is odd; i.e.,M = 2L−1.
LetCo be an L × L full diversity rotation matrix [17–19] and⎛

⎜⎜⎜⎝
x1 xL+1

x2 xL+3

...
...

xL x2L

⎞
⎟⎟⎟⎠ = Co

⎛
⎜⎜⎜⎝

s1 sL+2

s2 sL+3

...
...

sL+1 s2(L+1)

⎞
⎟⎟⎟⎠ . (3)

Then, in this case, our code is constructed as follows:

X(s) =

(
X1

X2

)
(4)

whereX(s) = diag(A(x1, xL+1), · · · ,A(xL−1, x2L−1),02(L−1)×1)
and X2 = (02×(2L−3),A(xL, x2L)). The codes in Eqs. (2) and
(4) are BDCO codes respectively for even and odd numbers of
antennas.

Example 1. ForM = N = 4, the codeword matrix is

X =

⎛
⎜⎜⎝

x1 x3 0 0
−x∗

3 x∗
1 0 0

0 0 x2 x4

0 0 −x∗
4 x∗

2

⎞
⎟⎟⎠

The symbol transmission rate of this code is one per channel use.
Example 2. ForM = 3, N = 4, the codeword matrix is

X(s) =

⎛
⎜⎜⎝

x1 x3 0
−x∗

3 x∗
1 0

0 x2 x4

0 −x∗
4 x∗

2

⎞
⎟⎟⎠

The symbol transmission rate of this code is also one per channel
use, but we have one time slot delay.

2.1.2. Block-diagonal real orthogonal (BDRO) code design

(1) The number of the transmitter antennas is even; i.e., M = 2L.
LetRe be an L × L full diversity real rotation matrix [20] and⎛

⎜⎜⎜⎝
x1 xL+1

x2 xL+2

...
...

xL x2L

⎞
⎟⎟⎟⎠

re

= Re

⎛
⎜⎜⎜⎝

s1 sL+1

s2 sL+2

...
...

sL s2L

⎞
⎟⎟⎟⎠

re

(5)

⎛
⎜⎜⎜⎝

x1 xL+1

x2 xL+2

...
...

xL x2L

⎞
⎟⎟⎟⎠

im

= Re

⎛
⎜⎜⎜⎝

s1 sL+1

s2 sL+2

...
...

sL s2L

⎞
⎟⎟⎟⎠

im

(6)

Then, our code is constructed by

X(s) = diag(A(x1, xL+1),A(x2, xL+2), · · · ,A(xL, x2L)) (7)

(2) The number of the transmitter antennas is odd; i.e.,M = 2L−1.
LetRo be an L × L full diversity real rotation matrix [20] and⎛

⎜⎜⎜⎝
x1 xL+1

x2 xL+2

...
...

xL x2L

⎞
⎟⎟⎟⎠

re

= Ro

⎛
⎜⎜⎜⎝

s1 sL+1

s2 sL+2

...
...

sL s2L

⎞
⎟⎟⎟⎠

re

(8)

⎛
⎜⎜⎜⎝

x1 xL+1

x2 xL+2

...
...

xL x2L

⎞
⎟⎟⎟⎠

im

= Ro

⎛
⎜⎜⎜⎝

s1 sL+1

s2 sL+2

...
...

sL s2L

⎞
⎟⎟⎟⎠

im

(9)

Then, in this case, our codeword matrix is constructed as follows:

X(s) =

(
X1

X2

)
(10)

whereX(s) = diag(A(x1, xL+1), · · · ,A(xL−1, x2L−1),02(L−1)×1)
and X2 = (02×(2L−3),A(xL, x2L)). The codes in Eqs. (7) and
(10) are BDRO codes respectively for even and odd numbers of
antennas.

De nition 1 A STBC is said to be g-group decodable [12–14] if the
objective function for the ML receiver can be expressed as a sum of
g sub-factions; i.e., ‖y−Xh‖2

2 =
∑g

i=1 Fi, where each Fi consists
of the symbols from only one group.

De nition 2 Let T be K × K rotation matrix and b = Tx for
x ∈ X . T is said to be a full diversity rotation matrix if∏K

k=1(bi −
b′i) �= 0 for any x �= x′ ∈ X for any x �= x′ ∈ X .

3. CODE PROPERTIES AND PERFORMANCE ANALYSIS

Our principal purpose in this section is to discuss some properties
and analyze the error performance of the code design proposed in
Subsection 2.1.

Under Assumption 1, given a channel realization h and a max-
imum likelihood detector (MLD), the probability P (s → s′|h) of
transmitting s and deciding in favor of s′ �= s at the decoder is given
by [21]

P
(
s → s′|h)

= Q
(
d(s, s′)

)
, (11)

where d2(s, s′) = ρ
M

hHX(e)XH(e)hwith e = s−s′ andQ(t) =

(1/
√

π)
∫ ∞

t
e−t2/2dt. When the SNR is high, the union bound can

be used [21] to construct the following “snug” bound on the average
block error probability Pble, Pble ≤ ∑

s �=s′ P (s)P (s → s′|h) =∑
s�=s′ P (s)Q (d(s, s′)). We will nd it convenient to use the

following alternative expression for the Q function [22] Q(t) =
1
π

∫ π/2

0
exp

(
− t2

2 sin2 θ

)
dθ. By taking the average of Eq. (11) over

the random vector h, the average pair-wise error probability can be
written as

P
(
s → s′

)
=

1

π

∫ π/2

0

dθ

det
(
I + ρXH (e)X(e

2M sin2 θ
)
) , (12)

Now, we are in a position to formally state our main results.

Theorem 1 The BDCO and the BDRO codes have the following
common properties:

1. The symbol rate per channel use is one.

2. The code provides full diversity for the ML receiver.

3. The code with the full diversity complex rotation matrix C is
two-group decodable, while the code with the full diversity
real rotation matrixR is four-group decodable.

OUTLINE OF PROOF: Statement 1 is clear.
To prove Statement 2: Consider the BDRO code for even num-
ber of transmitter antennas. In this case, we can see that
det(XH(e)X(e)) =

∏L
i=1 det2(A(xi, xL+i)) =

∏L
i=1(|xi|2 +

|xi+L|2)2 =
∏L

i=1

(
(xi)

2
re + (xi)

2
im + (xi+L)2re + (xi+L)2im

)2 ≥
max{∏L

i=1

(
(xi)

2
re +(xi+L)2re

)2
,
∏L

i=1

(
(xi)

2
im +(xi+L)2im

)2} ≥
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2M max{∏M
i=1(xi)

2
re,

∏M
i=1(xi)

2
im} > 0 due to the full diversity

real rotation matrixRe. Proofs for the other cases are similar.
For Statement 3: Consider the BDRO code for even number

of the transmitter antennas. Here, the ML detection is equivalent
to nding an optimal code matrix that minimizes the function,
F (s) = ‖y − X(s)h‖2

2. Since F (s) can be rewritten as
F (s) = ‖z − Hu‖2

2, where z = (y1, y
∗
2 , y3, y

∗
4 , · · · , y2L)T ,

u = (x1,−xL+1, x2,−xL+2, · · · ,−x2L)T and H =
diag(A(h1, h2), · · · ,A(h2L−1, h2L)), then F (s) =
zHz − zHHu − uHHHz + uHHHHu. Let w =
Hz = (w1, w2, · · · , w2L)T , then, F (s) can be written as
F (s) = zHz + F1 + F2 + F3 + F4. where Fk for k = 1, 2, 3, 4
are de ned by

F1 = −
L∑

i=1

(
w2i−1)re(xi)re − (|h2i−1|2 + |h2i|2)((xi)

2
re

)

F2 =

L∑
i=1

(
w2i−1)im(xi)im + (|h2i−1|2 + |h2i|2)((xi)

2
im

)

F3 =

L∑
i=1

(
w2i)re(xi+L)re + (|h2i−1|2 + |h2i|2)((xi+L)2re

)

F4 = −
L∑

i=1

(
w2i)im(xi+L)im − (|h2i−1|2 + |h2i|2)((xi+L)2im

)

According to our code design Eq. (7), F1 and F2 only involve the
real and imaginary parts of si for i = 1, 2, · · · , L, respectively,
while F3 and F4 only involve the real and imaginary parts of si+L

for i = 1, 2, · · · , L, respectively. In other words, the original ob-
jective function F (s) is now separated into four subfunctions, with
each involving one group of independent variables. Therefore, min-
imizing F (s) is equivalent to minimizing each subfunction. Proofs
for other cases are similar. �

Theorem 2 When the number of transmitter antennas is either
M = 2n or 2n−1, the code design with the full diversity complex ro-
tation matrixCminimizes the worst case pair-wise error probability
of the maximum likelihood detector for the square QAM constella-
tion among all the linear dispersion codes with rate one.

OUTLINE OF PROOF: First, we establish a lower bound on the
worst case pair-wise error probability for any LD code [23]
with symbol rate one. Let XF (s) be an arbitrarily given
code matrix, XF (s) =

∑N
k=1(F1,ksk + F2,ks∗k) with a

power budget
∑N

k=1 tr(FH
1,kF1,k + FH

2,kF2,k) ≤ MN . Con-
sider the case when the error is such that |em| = dmin and
ek = 0, k = 1, 2, · · · , N, k �= m. Now we select an integer such
that m = arg min1≤k≤N tr(FH

1,kF1,k + FH
2,kF2,k). Therefore,

we have tr(FH
1,mF1,m + FH

2,mF2,m) ≤ 1
N

∑N
k=1 tr(FH

1,kF1,k +

FH
2,kF2,k) ≤ M . Notice that the denominator in the inte-

gral of Eq. (12) can be written as det
(
I +

ρ XH
F (e)XF (e)

2M sin2 θ

)
=

det

(
I +

ρ d2
min(FH

1,mF1,m+FH
2,mF2,m)

2M sin2 θ

)
. Using Hardamard’s

inequality [24] and employing the relationship be-
tween the arithmetic mean and the geometrical

mean, then det

(
I +

ρ d2
min(FH

1,mF1,m+FH
2,mF2,m)

2M sin2 θ

)
≤

∏M
i=1

(
1 +

ρ d2
min[FH

1,mF1,m+FH
2,mF2,m]ii

2M sin2 θ

)
≤

(
1 +

ρ d2
mintr(FH

1,mF1,m+FH
2,mF2,m)

2M2 sin2 θ

)M

≤
(
1 +

ρ d2
min

2M sin2 θ

)M

.

Therefore, from Eq. (12), the worst case pair-wise error probability
is lower bounded by max

s,s′∈SQ, s�=s′
PF (s → s′) ≥ J

(
ρ d2

min
2M

)
.

where J(a) is given by J(a) = 1
π

∫ π/2

0

(
1 + a

sin2 θ

)−M
dθ for

a > 0. Thus, we obtain

min
F

max
s,s′∈SQ, s�=s′

PF (s → s′) ≥ J

(
ρ d2

min

2M

)
. (13)

Now, we establish an upper bound. For our code design with M =
2n, we have that det(XH(e)X(e)) =

∏L
i=1 det2(A(xi, xL+i)) =∏L

i=1(|xi|2 + |xi+L|2)2 ≥ max{∏L
i=1 |xi|4, ∏L

i=1 |xL+i|4} ≥
d2M
min due to the full diversity complex rotation matrix Ce.
This is also true for our code design with M = 2n −
1. Now, using the Minkowski’s inequality [24] we obtain
that for any nonzero vector e and nonzero θ in the interval
[0, π/2], there is det

(
IM + ρ

2M sin2 θ
XH(e)X(e)

)1/M ≥ 1 +
ρ

2M sin2 θ
det

(
XH(e)X(e)

)1/M ≥ 1+
ρ d2

min
2M sin2 θ

. We conclude that

det
(
IM + ρ

2M sin2 θ
XH(e)X(e)

) ≥
(
1 +

ρ d2
min

2M sin2 θ

)M

This re-

sults in max
s,s′∈SQ, s�=s′

P (s → s′) ≤ J
(

ρ d2
min

2M

)
. Therefore, we have

min
tr(FHF)≤Q

max
s,s′∈SQ

s�=s′

PF (s → s′) ≤ J

(
ρ d2

min

2M

)
. (14)

Combining (13) with (14) yields min
tr(FHF)≤Q

maxs,s′∈SQ

s �=s′
PF (s →

s′) = J
(

ρ d2
min

2M

)
. This completes the proof of theorem 2. �

We make the following comments on Theorems 1 and 2.
1. Our code guarantees that the worst case pair-wise error prob-
ability is minimized forK-ary QAMwhenM = 2n. As a re-
sult, optimal coding gain is achieved. Although the diagonal
space-time (DAST) block code [11] also provides the optimal
coding gain in this case, the number of the code matrices in
the DAST code achieving the optimal coding is much larger
than that of our code matrices. As a result, its performance is
much worse than ours, which can be seen in the performance
comparison by simulations shown in Fig. 1. Also, our code
is two-group decodable, but the DAST code must be decoded
jointly.

2. When the number of the transmitter antennas is either M =
2n or M = 2n − 1, even though our BDRO code is four-
group decodable achieving full diversity, the coding gain is
less than that of our BDCO two-group decodable code. Since
BDRO codes are simpler to detect due to the reduced number
of symbols which are real, this results in a trade off between
detection simplicity and performance.

4. CONCLUSION

A novel and very simple design of two-group and four-group de-
codable block diagonal linear dispersion codes with rate one for any
number of the transmitter antennas was proposed in this paper. it
was shown that our proposed code has the following properties: (1)
It achieves full diversity for theML receiver. (2)When the number of
the transmitter antennas is equal to 2n or 2n − 1, our proposed code
minimizes the worst case average pair-wise error probability of the
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Fig. 1. Average BER comparison of our code with the DAST code
for the MISO system with 4 transmitter antennas

ML detector forK-ary QAM. Therefore, in this case, it achieves op-
timal coding gain. (3) ML detection can be ef ciently implemented
by separating the original symbol group into two-subgroup or four-
group. (4) When the number of the transmitter antennas is even, our
code is delay-optimal. When the number of the transmitter antennas
is odd, our code is one time slot delay.
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