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ABSTRACT

Non-linear precoding for point-to-point (P2P) multiple-input
multiple-output (MIMO) systems is considered. First, the
minimum mean square error (MMSE) optimal vector precod-
ing (VP) is presented for different receiver structures, viz.,
weighted identity matrix, diagonal matrix, weighted unitary
matrix, and matrix without particular structure. Whereas the
former two structures can also be applied to the vector broad-
cast channel, the latter two are only realizable for cooperative
receivers. Second, VP is derived that minimizes the MSE but
is restricted to maximize the mutual information of theMIMO
channel. Third, the correspondingTomlinson-Harashima pre-
coding (THP) is found by applying the nearest-plane ap-
proximation to the computation of the perturbation signal.
The resulting maximummutual information THP clearly out-
performs the state-of-the-art P2P-MIMO THP based on the
generalized triangular decomposition (GTD) with respect to
MSE and BER.

Index Terms— MIMO systems, non-linear transceivers,
information rates, MMSE design, vector precoding.

1. INTRODUCTION

The maximum mutual information of P2P-MIMO channels
can be achieved by linear transceivers, where the transmit co-
variance matrix is the waterfilling solution (e.g., [1]). When
restricting to linear transceivers, the transmit covariance ma-
trix resulting from the MMSE optimization takes a different
form and is therefore not maximizing the mutual information
(e.g., [2]). However, it was shown in [3, 4], that the MMSE
optimal decision feedback equalization (DFE) and THP reach
maximum mutual information and lead to equal MSEs for all
scalar data streams. Thus, no bit-loading is necessary.
With finite-length codes, DFE suffers from error propa-

gation contrary to THP. However, THP has the disadvantage
of power & shaping and modulo loss due to the modulo op-
erators at the transmitter and the receiver, respectively. The
P2P-MIMO THP design presented in [3, 5] is based on the
standard assumption that the output of the modulo operator
at the transmitter is uncorrelated (e.g., [6]). This assumption
is, however, only an approximation and the resulting transmit
covariance matrix is not maximizing the mutual information.
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Fig. 1. P2P-MIMO System with Modulo Receiver

We propose VP [7, 8] for P2P-MIMO systems, since VP
overcomes the problem of power loss and has no error propa-
gation. Besides MMSE designs that are not necessarily maxi-
mizing the mutual information, we also optimize VP for P2P-
MIMO systems by minimizing the MSE under the constraint
that the transmit covariance matrix is equal to the waterfill-
ing solution. By applying the nearest-plane approximation
[9] to the closest point search necessary for the computation
of the perturbation signal, we find new THP schemes for P2P-
MIMO systems that outperform the GTD based designs of
[3, 5].

2. SYSTEMMODEL

The data symbols s ∈ AB are perturbed by a ∈ MB to get the
virtual desired signal d ∈ CB , where A denotes the modula-
tion alphabet andM = τZ+jτZ. Note that the transmitter has
the freedom to add the perturbation signal a due to the mod-
ulo operatorM(•) with the modulo constant τ at the receiver
(e.g., [10]). From the linear transformation of d by the pre-
coding filter P ∈ C

N×B , the transmit signal y = Pd ∈ C
N

results which propagates over the channel H ∈ CM×N , is
perturbed by the noise η ∈ CM ∼ NC(0, Cη), and filtered
by the equalizerG ∈ C

B×M to get the estimate (see Fig. 1)

d̂ = GHPd + Gη ∈ C
B (1)

for d. For notional brevity, we assume thatM = B ≤ N and
thatH has full rank.

3. LINEAR DESIGN

The transmit covariance matrix maximizing the mutual infor-
mation is the waterfilling solution resulting from

Cwf = argmax
Cy

I(y; x) s.t.: E
[
‖y‖2

2

]
≤ Etx (2)
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where Cy = E[yyH] is the transmit covariance matrix and
I(y; x) = log2 det(I + CyHHC−1

η H). With the reduced
eigenvalue decomposition (EVD) ofHHC−1

η H = UΦUH,
where U ∈ CN×B and the diagonal elements of Φ ∈ R

B×B
0,+

are sorted in non-increasing order, we have (e.g., [1])

Cwf = U
(
μI − Φ−1

)
+

UH. (3)

Here, μ is chosen to fulfill tr(Cwf) = Etx and (•)+ applies
max(0, •) element-wise. The corresponding precoder is

Pwf = U
(
μI − Φ−1

)1/2

+
Ξ−1/2V H. (4)

The B eigenvalues of Cd = E[ddH] = V ΞV H are on the
diagonal of Ξ ∈ R

B×B
0,+ in non-increasing order and the re-

spective unitary modal matrix is V ∈ C
B×B . Using this pre-

coder, the capacity can be achieved by employing bit-loading,
infinite block length, and an optimal receiver.
The MMSE optimal linear precoder and equalizer obey

{Plin, Glin} = argmin
{P ,G}

E
[
‖d − d̂‖2

2

]
s.t.: E

[
‖y‖2

2

]
≤ Etx

(5)
can be found with similar steps as in [2], and are respectively

Plin = U
(
μΦ−1/2Ξ−1/2 − Φ−1Ξ−1

)
+

V H (6)

andGlin = (C−1
d +P H

linH
HC−1

η HPlin)
−1P H

linH
HC−1

η . The
scalar μ is chosen to fulfill tr(Clin) = Etx and the MMSE
transmit covariance matrix Clin = PlinCdP H

lin is clearly dif-
ferent fromCwf.

4. MMSE VP FOR P2P MIMO SYSTEMS

The statistics of d = s + a are unknown, since it is hard
to find the statistics of a. Therefore, we must use the time
average instead of the expectation, i.e.,

Cd =
1

Q

Q∑
q=1

d[q]dH[q] (7)

with the block length Q ≥ B and the time index q (cf. [8]).

4.1. Weighted Identity Equalizer
In [8], the receiver was restricted to be a weighted identity
matrix, i.e.,G = gI. This restriction led to a closed-form so-
lution for the precoderPBC whose structure is independent of
the perturbation signal. Moreover, a computation rule for the
perturbation signal a[q] was found in [8] that can be solved
by standard algorithms for a closest-point search in a lattice.

4.2. Diagonal Equalizer
For the case of a vector broadcast channel, a diagonal equal-
izer, i.e., G = diag(g1, . . . , gB), is the most general setup.
Since the scalar receivers can be found in closed form for a

given transmitter and also the transmitter depends on the re-
ceivers in closed form, an alternating optimization (AO) was
proposed for the MMSE design of linear precoders for such a
setup in [11]. This approach to linear precoding can be easily
extended to solve the VP problem. Not only the transmitter
and the receivers are computed alternately, but also the per-
turbation signal is recomputed in every iteration. Since every
single step reduces theMSE, the iteration converges (cf. [11]).

4.3. Weighted Unitary Equalizer
An interesting generalization of a weighted identity matrix re-
ceiver is a weighted unitary matrix equalizer, i.e., G = gΓ H

with ΓΓ H = I. Again, the MSE can be minimized by an
AO. For some normalized equalizerΓ H and perturbationa[q]
(i.e., Cd is given), the precoder minimizing the MSE can be
expressed as (H is replaced by Γ HH in the solution of [8])

Pun = g−1
un HH

(
HHH + ξI

)−1
Γ (8)

with ξ = tr(Cη)/Etx. The scalar at the receiver gun follows
from tr(PunCdP H

un) = Etx. Substituting Pun and gun into the
MSE ε =

∑Q
q=1 E[‖d[q] − d̂[q]‖2

2|s[q]]/Q yields

εun = ξ tr
(
Γ H

(
HHH + ξI

)−1
ΓCd

)
. (9)

With Lagrangian multipliers, the solution to the optimization

Γun = argmin
Γ

εun s.t.: ΓΓ H = I

can easily be obtained and reads as

Γun = QV H (10)

with the unitaryQ of the EVDHHH = QΥQH, where the
diagonal elements of Υ are sorted in non-increasing order.
Minimizing the MSE εun with respect to the perturbation

for given Γ H can be split into optimizations for each time
index q = 1, . . . , Q and due to (7) and d[q] = s[q] + a[q],

aun[q] = argmin
a∈MB

∥∥∥(HHH + ξI)−1/2Γ (s[q] + a)
∥∥∥

2

2
. (11)

Combining the last results, we propose following AO. In ev-
ery step, we assume thatPun and gun are used. Then, the MSE
εun is minimized alternately with respect to Γ and a[q] for
q = 1, . . . , Q, where the other quantity is kept fixed. Since
the MSE is reduced in every step, the iteration converges.

4.4. Unconstrained Equalizer
If the MSE ε =

∑Q
q=1 E[‖d[q]−d̂[q]‖2

2|s[q]]/Q is minimized
with respect to P and G for given a[q], we have to solve
an optimization as in (5). With the linear MMSE equalizer
Gunc = (C−1

d + P HHHC−1
η HP )−1P HHHC−1

η , we get

εunc = tr
((

C−1
d + P HHHC−1

η HP
)−1

)
.
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From (6), we can conclude that

Punc = UΦ−1/2ΨV HC
−1/2
d (12)

with C
1/2
d = V Ξ1/2V H and Ψ = (μI − Φ−1/2Ξ−1/2)+.

Substituting Punc into εunc leads to

εunc = tr
(
V

(
I + Ψ2

)−1
V HCd

)
. (13)

Due to (7), the q-th perturbation can be obtained with

aunc[q] = argmin
a∈MB

∥∥∥(I + Ψ2)−1/2V H (s[q] + a)
∥∥∥

2

2
. (14)

We propose following AO to solve the MSE minimization for
an equalizer G with arbitrary structure. We assume in every
step that Gunc is used. Then, εunc is minimized alternately
with respect to the perturbation a[q] for q = 1, . . . , Q and
P , i.e., we alternate between the evaluation of (14) and the
update of V (modal matrix of Cd) and Ψ [see (12)]. Again,
every step reduces the MSE and the iteration converges.

5. MAXIMUMMUTUAL INFORMATION MMSE VP

In this Section, we investigate the optimization, where the
MSE is minimized under the constraint that the transmit co-
variance matrix is the waterfilling solution:

{Pcap, Gcap, acap[q]} = argmin
{P ,G,a[q]}

ε s.t.: PCdP H = Cwf

(15)
with the MSE ε =

∑Q
q=1 E[‖d[q] − d̂[q]‖2

2|s[q]]/Q. Un-
der the heuristical assumption that y is Gaussian, this max-
imizes the mutual information between x and y. We will
show that this significantly improves the BER andMSE. Note
that no explicit transmit power constraint is necessary, since
tr(Cwf) = Etx. The optimal receiver is the linear MMSE
equalizerGcap = (C−1

d + P HHHC−1
η HP )−1P HHHC−1

η

and from (4), we deduce that

Pcap = U
(
μI − Φ−1

)1/2

+
V HC

−1/2
d . (16)

With above equalizer and precoder, the MSE reads as

εcap = tr
(
V ΘV HCd

)
. (17)

whereΘ = (I + (μΦ − I)+)−1. Thus, the q-th perturbation
minimizing above MSE εcap can be found with [see also (7)]

acap[q] = argmin
a∈MB

∥∥∥Θ1/2V H (s[q] + a)
∥∥∥

2

2
. (18)

The AO minimizing the MSE εcap in (17), i.e., the equalizer
Gcap and the precoderPcap are used, alternately computes the
perturbation a[q] with (18) for q = 1, . . . , Q and the modal
matrix V of Cd =

∑Q
q=1 d[q]dH[q]/Q = V ΞV H. Every

step reduces the MSE. Thus, the iteration converges.

6. MMSE THP FOR P2P MIMO SYSTEMS

THP minimizing the MSE for P2P MIMO systems with an
unconstrained equalizer was proposed in [3, 5], where the
standard assumption was used that the scalar outputs of the
modulo operator at the transmitter are mutually uncorrelated
(e.g., [6]). Under this assumption, it can be shown that the
MMSE design leads to a mutual information maximizing wa-
terfilling transmit covariance matrix and the MSE for all data
streams is the same [3, 5]. Unfortunately, the assumption of
uncorrelatedness is only an approximation and the maximum
mutual information is not reached with the resulting transmit
covariance matrix.
We employ the result that THP is a restricted VP, where

the perturbation signal is not found via the full closest point
search in a lattice but Babai’s nearest plane approximation [9]
is used (e.g., [12]).
The rules for perturbation signal computation of the pro-

posed schemes can be written as [cf. (11), (14), and (18)]

aopt[q] = argmin
a∈MB

‖A(s[q] + a)‖2
2

where A depends on the employed VP design. Clearly, A

can be replaced by D1/2LΠ from the symmetrically per-
muted Cholesky factorization ΠAHAΠT = LHDL with
diagonalD ∈ R

B×B
0,+ , unit lower triangular L ∈ CB×B , and

the unitary permutation matrixΠ ∈ {0, 1}B×B. We use the
algorithm of [13] to compute above factorization, since it suc-
cessively minimizes the MSE. The nearest plane approxima-
tion finds the entries of a[q] successively, i.e., the k-th entry
abk

[q] of Πa[q] is computed with the already found values
for the first k − 1 entries kept fixed. Mathematically,

anp,bk
[q] = argmin

a∈M

∣∣∣∣∣sbk
[q]+ a+

k−1∑
i=1

�k,i(sbi
[q] + anp,bi

[q])

∣∣∣∣∣
2

.

Here, �k,i is the k-th element in the i-th column of L. Fortu-
nately, above optimization can be solved by a simple rounding
operation and the operation of the transmitter can be reformu-
lated as a feedback loop with a modulo operation (see e.g.,
[12]), i.e., we end up with a THP transmitter.
Clearly, the successive computation of the perturbation

signal as for THP is suboptimal compared to the full search
employed for VP. Thus, it is not ensured that the update of
the perturbation signal in any of the proposed AOs leads to a
reduction of the MSE compared to the previous step. We see
that a convergence cannot be proven. However, we observed
that the iterations in fact converge.

7. SIMULATION RESULTS

We employed a channel model with i. i. d. unit variance
Rayleigh fading coefficents and 10000 channel realizations.
The AOs where initialized with V = I and the iteration was
stopped, when the relative change in MSE was below 10−4.
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Fig. 2. BER vs. SNR forM = B = 4 Antennas, QPSK
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Fig. 3. BER vs. SNR forM = B = 10 Antennas, 16QAM

We omit the mutual information results, because the curves
lie very close to each other. We observed that the MMSE op-
timal VP and THP offer a higher mutual information than the
GTD based THP of [3, 5]. As expected, the maximummutual
information design of Section 5 delivers the highest mutual
information. The difference to MMSE VP and THP is small
and for high SNR, the gain over GTD THP is about 0.8 dB
and 0.25 dB for the 4 × 4 and 10 × 10 system, respectively.
In Fig. 2, we see that the maximum mutual information

and the MMSE designs have nearly the same BER perfor-
mance for a 4×4MIMO system with QPSK, if VP or THP is
used. Interestingly, the state-of-the-art GTD THP is even out-
performed by the MMSE design with weighted unitary equal-
izer.
For a 10 × 10 system with 16QAM as in Fig. 3, a differ-

ence between VP and THP for the maximum mutual infor-
mation and the MMSE designs can be observed. This behav-
ior can be explained by the bad performance of the nearest
plane approximation for ill-behaved generator matrices that

are more likely for larger systems. Again, the GTD THP de-
sign is worse than the unitary equalizer design, whose results
are closer to that of MMSE THP than for the 4 × 4 system.
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