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ABSTRACT

We introduce a novel sequential importance sampling (SIS)

algorithm for the blind equalization of doubly selective chan-

nels. Our algorithm propagates a Monte Carlo (MC) approx-

imation of the posterior fixed-lag smoothing distribution of

the symbols. As we shall see, it is possible to sample parti-

cles from the optimal importance distribution and to update

the smoothing importance weights accordingly. We next ap-

ply the developed method as a SISO (Soft Input Soft Output)

equalizer in a turbo receiver framework. The performance

evaluation of our algorithm is carried out under different fad-

ing scenarios, and the results are compared with a soft itera-

tive channel estimation scheme available in the literature.

Index Terms— Blind Equalization, Turbo Equalization,

Sequential Importance Sampling Methods.

1. INTRODUCTION

Equalizers aim at reducing the effect of intersymbol interfer-

ence (ISI) in frequency selective channels. Blind equalizers

do not use training data and thus avoid significant overheads

and bandwidth-inefficient communication. A number of blind

equalizers have been proposed for the case of time invariant

channels. Some algorithms estimate the channel coefficients

via EM, and are based either on the BCJR [1] or the Viterbi

[2] algorithm. SIS algorithms (either filters [3] or fixed-lag

smoothers [4]) have also been proposed. For time-varying

channels, a blind equalization technique based on EM and the

Viterbi algorithm has been proposed [5]; solutions based on

the per survivor processing (PSP) method [6] or on particle

filtering [7] are also available.

In this paper we propose a blind, fixed-lag, smoothing

based equalizer for the case of time-varying channels. An

important feature of our SIS algorithm is that one can draw

the N particles from the optimal importance function. Since

the target distribution (the posterior transmitted symbols dis-

tribution) is discrete and the channel response is analytically
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supported by CAPES-Brazil, under grant BEX 1203/06-1.

marginalized out, only a few number of particles is required to

attain good performance. Moreover, the fixed-lag is a param-

eter which can be adjusted to find a suitable trade-off between

precision and complexity. By contrast, other methods such as

EM or MCMC techniques process the entire batch of data,

and thus do not present this flexibility.

Next, our algorithm can naturally be used as a SISO

equalizer embedded in a turbo equalization setup. Turbo

equalization systems were first proposed in [8] and further

developed by several researchers (see e.g. [9] and references

therein). They consist in an iterative receiver algorithm in

which the equalizer and decoder exchange extrinsic soft in-

formation about the same batch of received data, until they

achieve near-optimal bit error rate (BER) performance if the

channel is known. Our method is applied to the scenario

where the channel is both unknown and doubly-selective,

performing channel estimation jointly with equalization.

2. STATE-SPACE MODEL

The binary data sequence is encoded with a Forward Error

Correction (FEC) code and randomly interleaved before be-

ing mapped to a complex symbol xn which belongs to a fi-

nite alphabet of size Q. The resulting data sequence is parti-

tioned into blocks (frames) of length P and transmitted over

a channel which introduces additive noise and ISI. So the

receiver input yn is related to the transmitted symbols via

yn = xTnhn + ωn, where T (and later on H) stands for trans-

pose (resp. Hermitian transpose), xn = [xn, . . . , xn−L+1]T ,

and hn = [h0,n, . . . , hL−1,n]T is the baseband channel im-

pulse response, assumed to be of finite length L. Under the

turbo equalization setup, we assume that xn (n = 1, . . . , P )
are mutually independent and their probability mass function

(pmf) p(xn) are known to the equalizer. ωn are zero-mean

circularly symmetric complex Gaussian variables with known

variance Λωn , independent and independent of {xn}. Finally

hn+1 = Fnhn + vn (1)

where h0 and vn are Gaussian distributed with parameters

(0,Λh
0 ) and (0,Λv

n), respectively, and vn are independent
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and independent of {xn}, {ωn} and h0.

3. A FIXED-LAG SIS SMOOTHING ALGORITHM

In this section we focus on the computation of a SIS approx-

imation of p(xn|y1:n+M ) where M > 0 is some fixed delay.

Under the turbo equalization setup, we would then be able to

forward to the decoder the (extrinsic) soft information about

the symbols, or equivalently about the coded bits. So let us

assume that the a posteriori joint pmf of symbols x1:n−1 is

approximated by

p(x1:n−1|y1:n+M−1) ≈
N∑
i=1

λin−1δ(x1:n−1 − xi1:n−1) , (2)

where the samples xi1:n−1 are generated from an importance

distribution q(x1:n−1|y1:n+M−1), and the importance weight

λin−1 associated to the i-th trajectory xi1:n−1 is given by

λin−1 ∝ p(xi1:n−1|y1:n+M−1)
q(xi1:n−1|y1:n+M−1)

,

N∑
i=1

λin−1 = 1. (3)

Let us see how to propagate (2) recursively. If we assume

that q(x1:n|y1:n+M ) factorizes as q(xn|x1:n−1, y1:n+M ) ×
q(x1:n−1|y1:n+M−1), then for all i [xi1:n] = [xi1:n−1, x

i
n], in

which each particle xin is drawn from q(xn|xi1:n−1, y1:n+M ).
As for the weights λin−1, we observe that p(x1:n|y1:n+M ) fac-

torizes as p(x1:n|y1:n+M ) = λ
i

n p(x1:n−1|y1:n+M−1) with

λ
i

n =
p(xn|x1:n−1, y1:n+M )p(yn+M |x1:n−1, y1:n+M−1)

p(yn+M |y1:n+M−1)
.

So the weights can be computed recursively as

λin ∝ p(xin|xi1:n−1, y1:n+M )p(yn+M |xi1:n−1, y1:n+M−1)
q(xin|xi1:n−1, y1:n+M )

×

p(xi1:n−1|y1:n+M−1)
q(xi1:n−1|y1:n+M−1)︸ ︷︷ ︸

∝λi
n−1

. (4)

Finally
∑N

i=1 λ
i
nδ(x1:n−xi1:n) approximates p(x1:n|y1:n+M ),

and thus
∑N

i=1 λ
i
nδ(xn − xin) approximates p(xn|y1:n+M ).

Now, like in all SIS algorithms, it is important to resample

from
∑N

i=1 λ
i
n δ(xn−xin) (either systematically or according

to some strategy) and also to choose q(xn|xi1:n−1, y1:n+M )
carefully. To that respect, the best choice is to sample the

particles from the optimal conditional importance distribution

[10]. In our model, the optimal distribution reads

qopt(xn|xi1:n−1, y1:n+M ) = p(xn|xi1:n−1, y1:n+M ), (5)

and under that choice (4) becomes

λin ∝ p(yn+M |xi1:n−1, y1:n+M−1)︸ ︷︷ ︸
λ̃i

n

λin−1. (6)

Now, sampling from the optimal kernel is often impossible,

so many efforts have been expended in order to approximate

this distribution [10]. In our case however, it happens that

one can compute qopt exactly, and since this distribution is

discrete sampling from it is straightforward. From now on,

we thus focus on the exact computation of (5) (see §3.1) and

of the incremental importance weight λ̃in in (6) (see §3.2).

3.1. Computing the optimal importance pmf

Let us address (5). At each time instant n, and for each tra-

jectory i, we should sample a new particle xin according to

p(xn|xi1:n−1, y1:n+M ) =

p(xn)p(yn:n+M |xn, xi1:n−1, y1:n−1)∑
xn
p(xn)p(yn:n+M |xn, xi1:n−1, y1:n−1)

. (7)

Pmf p(xn) is known, so it remains to compute

p(yn:n+M |xn, xi1:n−1, y1:n−1) =∑
xn+1

..
∑
xn+M

[
M∏
k=1

p(xn+k)

]
p(yn:n+M |θi) (8)

with θi
def
= (xi1:n−1, xn:n+M , y1:n−1)

def
= (x̃1:n+M , y1:n−1),

i.e. x̃k = xik if k ≤ n − 1 and x̃k = xk if n ≤ k ≤ n +M .

Let also x̃n = [x̃n, x̃n−1, . . . , x̃n−L+1]T . One can show that

p(yn:n+M |θi) in (8) is Gaussian with parameters which can

be computed recursively. Injecting into (7), we finally get

p(xn|xi1:n−1, y1:n+M ) ∝

p(xn)
∑
xn+1

..
∑
xn+M

[
M∏
k=1

p(xn+k)

]
p(yn:n+M |θi)︸ ︷︷ ︸

N (yn:n+M ;μyi
M+1,Σ

yi
M+1)

(9)

in which1 μyiM+1 and ΣyiM+1 are computed via the following

recursions (the proof is omitted for want of space) :

1. Initialization. Compute the parameters of p(hn|xi1:n−1,

y1:n−1) = N (hn; ĥin|n−1 , Λhi

n|n−1) by the Kalman

filter, and (μi1,Σ
i
1) as⎧⎪⎪⎨⎪⎪⎩

μi1 =
[
x̃Tn
Fn

]
ĥin|n−1,

Σi1 =
[
x̃Tn
Fn

]
Λhi

n|n−1

[
x̃Tn
Fn

]H
+

[
Λωn 0
0 Λv

n

] ; (10)

2. Recursion (k−1)→ k, for all k = 2, · · · ,M . Compute⎧⎨⎩
μik = Ai

k−1μ
i
k−1

Σik = Ai
k−1Σ

i
k−1A

iH
k−1

+ diag(0k−1,Λwn+k−1,Λ
v
n+k−1)

, (11)

1N (α; μ,Σ) denotes a Gaussian pdf with argument α and parameters

(μ,Σ).
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where diag( ) denotes a block-diagonal matrix, Ik−1

the (k − 1)× (k − 1) identity matrix, and

Ai
k−1 =

⎡⎣ Ik−1 0
0 x̃Tn+k−1

0 Fn+k−1

⎤⎦ ;
3. Final step M → (M + 1). Compute{

μyiM+1 =A
yi
Mμ

i
M

ΣyiM+1=A
yi
MΣ

i
M (A

yi
M )

H+diag(0M ,Λwn+M )
(12)

where

Ayi
M =

[
IM 0
0 x̃Tn+M

]
.

We remark that for each trajectory i, p(yn:n+M |θi) and then

(7) is computed by using only one Kalman filter.

3.2. Updating the Importance Weights

We now address the computation of λ̃in
def
= p(yn+M |xi1:n−1,

y1:n+M−1) in (6). One can see easily that

λ̃in =
∑
xn

. . .
∑
xn+M

[
M∏
k=0

p(xn+k)

] ∫
p(yn+M |hn+M , x̃n+M )

×p(hn+M |xn:n+M , x
i
1:n−1, y1:n+M−1)dhn+M . (13)

For a given i and xn:n+M , computing the integral in (13)

would require the evaluation of the parameters of the Gaus-

sian density p(hn+M |xn:n+M , x
i
1:n−1, y1:n+M−1), which are

given by a Kalman filter. A direct computation of λ̃in (for all

i, with 1 ≤ i ≤ N ) via (13) would thus require NQM+1

Kalman filters, which is prohibitive in most cases. Fortu-

nately, it happens that the computational burden can be dras-

tically reduced, and in particular that only one Kalman filter

is required for a given trajectory xi1:n−1. To see this, let us

rewrite λ̃in as

λ̃in =
p(yn:n+M |xi1:n−1, y1:n−1)
p(yn:n+M−1|xi1:n−1, y1:n−1)

. (14)

We recognize that the numerator of (14) is equal to the de-

nominator of (7) which has been computed before. Let us now

consider the denominator of (14). The term p(yn:n+M−1|θi)
is a Gaussian pdf with parameters (μyiM ,ΣyiM ), which have been

computed before (at step k =M , see (11)); finally

λ̃in =

∑
xn

..
∑
xn+M

[
M∏
k=0

p(xn+k)

]
N (yn:n+M ;μ

yi
M+1,Σ

yi
M+1)

∑
xn

..
∑

xn+M−1

[
M−1∏
k=0

p(xn+k)

]
N (yn:n+M−1;μ

yi
M ,Σ

yi
M )

,

(15)

in which μyiM (resp. ΣyiM ) is the first M × 1 subvector of

μyiM+1 (resp. the first M ×M submatrix of ΣyiM+1) (see (12)).

From a computational point of view, (15) suggests that the

quadratic forms in p(yn:n+M |xi1:n−1, y1:n−1) should be com-

puted recursively (along with recursions (11) and (12)) by us-

ing Woodbury’s lemma.

4. SIMULATION RESULTS

This section aims at evaluating the performance of the blind

SISO equalizer proposed in this paper, embedded in a turbo

equalization receiver. The following setup is used. A set of 80

data bits is randomly generated and encoded using a 1/2-rate

convolutional encoder with generator (1 +D2,1 +D +D2).

Next the coded bits are interleaved and mapped to ±1 sym-

bols (BPSK). The frame with 160 symbols (plus the coder

overhead) is then transmitted over a time-varying ISI chan-

nel of length 2 and with dynamics given by (1) with param-

eters Fn = α1/2I2, Λv
n = 0.5(1 − α)I2 and Λωn = N0/2

known at the receiver. Parameter α is set as 0.999 or 0.992.

Defining the normalized fading rate fd from
∫ fd

0
S(f)df ≈

0.98
∫ ∞
0
S(f)df , where S(f) is the power spectrum density

of the channel coefficients, α = 0.999 corresponds to a fad-

ing rate of fd ≈ 10−3 (slow-fading scenario), and α = 0.992
yields fd ≈ 10−2 (fast-fading scenario). At the receiver, the

BCJR algorithm is used as the SISO decoder. The fixed-lag

particle smoothing algorithm is implemented with M = 3
and N = 30 samples are used to approximate p(xn|y1:n+M ).
We resample from

∑N
i=1 λ

i
nδ(xn − xin) whenever the effec-

tive sample size (Neff ≈ (
∑N

i=1(λ
i
n)2)−1) falls below N/3;

this threshold is set empirically.

Our technique is compared with that of [11], which con-

sists in iteratively estimating the channel by using the statis-

tics (mean and variance) of each transmitted symbol, fed back

from the decoder in the previous iteration. This turbo scheme

with soft input channel estimator (SICE) is implemented un-

der the same conditions as above, and a BCJR algorithm is

used as the SISO equalizer. A preamble with 40 training sym-

bols initializes the algorithm.

The BER performance of the turbo receivers (at first

and fourth iterations) with either SICE or Fixed-Lag Particle

Smoothing (FLPS) equalizers is displayed in Figs. 1(a) and

1(b). The results are averaged over 1000 random channel

realizations. For comparison purposes, we also display the

performance, after the fourth iteration, of a turbo scheme

using a clairvoyant BCJR equalizer which processes the re-

ceived symbol with perfect knowledge of the channel.

Figure 1(a) displays the performance of our FLPS-based

receiver under slow fading (fd = 10−3). The significant gain

over the iterations shows the efficiency of our algorithm as a

SISO processing block. We observe a 1.5-2 dB gap between

the FLPS receiver performance and the upper limit shown by

the receiver with clairvoyant BCJR equalizer. Moreover, our
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Fig. 1. BER performance of FLPS-based turbo receiver com-

pared with the SICE-based and clairvoyant BCJR-based turbo

receivers. (a) fd = 10−3, (b) fd = 10−2.

receiver clearly outperforms that using the SICE technique,

mainly for high SNRs. We observe that at SNR ≥ 5 dB the

FLPS receiver achieves in the first iteration the same perfor-

mance as the SICE receiver after four iterations.

In the fast fading channel (fd = 10−2) case (see Fig. 1(b))

the FLPS and SICE receivers both degrade when compared to

the slow fading scenario, and the clairvoyant BCJR equalizer

here is far superior. However, the FLPS receiver still com-

pares favorably with the SICE one. We observe that perfor-

mances of the FLPS receiver improve significantly over itera-

tions, and after four iterations the FLPS receiver BER plot has

a noticeably decreasing slope. By contrast, the SICE receiver

performances do not really improve when the observations

become less noisy, even after some turbo iterations.

5. CONCLUSIONS

In this paper we proposed a novel blind equalization method

for doubly-selective channels. Our solution is based on a

fixed-lag smoothing of the transmitted symbols using the SIS

methodology. We showed that it is possible to sample parti-

cles from the optimal importance function, and that the time-

variant channel response can be marginalized out by using

only one Kalman filter per particle trajectory. Furthermore,

only a few number of particles is required in order to achieve

good performance results. Computer simulation results were

presented in order to validate our technique when it is used as

a SISO equalizer embedded in a turbo equalization receiver.

Our turbo receiver was shown to outperform another turbo

scheme designed for operating under doubly-selective chan-

nels, especially under a fast fading scenario.
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