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Abstract—Although iterative equalizers are well-known for
mitigating inter-symbol interference (ISI), recent results have
shown that the schemes perform poorly in the presence of
severe ISI, particularly when coding rates are high. Other
equalization schemes, such as the non-iterative canonical
decision-feedback equalizer (CDFE), have been shown to be
asymptotically optimal on any channel. However, the scheme
exhibits very high latency. To trade off between performance
and latency, we propose an equalizer structure that iterates
with both hard- and soft-decisions. In prior works, hard-
decision iterative equalizers were seen to perform poorly,
chiefly due to error-propagation in the feedback loop. However,
the scheme proposed in this paper outperforms the linear turbo
equalizer in both strong and weak ISI. On channels with weak
ISI, the equalizer outperforms both the CDFE as well as the
ideal DFE with perfect feedback. Simulation results on well-
known ISI channels support the findings.

Keywords: Intersymbol interference, decision feedback equalizers,
magnetic recording, channel coding, iterative methods.

I. INTRODUCTION

Linear minimum mean square error (MMSE) turbo equalizers
are well-known for mitigating inter-symbol or adjacent-channel
interference with low complexity (cf. [7], [8]). Intuitively, the idea
is to to exploit extrinsic information from a soft (probabilistic)
channel-decoder to improve symbol estimates at the equalizer
output. The equalizer, in turn, supplies soft information to the
channel decoder, resulting in an iterative loop where the extrinsic
information is “amplified” every iteration. However, it is known
that iterative linear equalizers perform poorly on channels with
severe ISI, such as magnetic recording channels (cf. [5]). On such
channels – where multi-level modulation is infeasible – the reduced
performance of the equalizer necessitates a substantial increase in
transmit power or a commensurate decrease in data-rate. In [4],
the authors showed that the performance of iterative equalizers can
be analyzed via extrinsic-information transfer (EXIT) and bit-error
rate (BER) charts. On channels with severe ISI, the authors used
these tools to show that convergence cannot always be reached
within a practical number of iterations, depending on the channel
code used.
On the other hand, a well-known method to tackle severe

ISI is the classical decision-feedback equalizer (DFE), which
consists of a feed-forward noise-whitening matched-filter, working
in conjunction with a feedback filter operating on hard-decisions
from the slicer. The feed-forward filter mitigates pre-cursor ISI

to create an almost minimum-phase channel-response, while the
feedback filter cancels the post-cursor ISI. If perfect decisions
can be provided, the DFE has been shown to be asymptotically
optimal at high SNR’s [2]. It is worth recalling that, at low SNR’s,
the DFE is not optimal due to residual pre-cursor ISI. Hence, an
intuitively appealing idea is to combine linear turbo equalization
with the classical DFE, an idea which was first investigated in [7].
However, the authors observed that the error-prone hard-decisions
from the slicer reduced performance significantly. In particular, the
linear turbo equalizer was observed to outperform the turbo DFE.
To minimize error-propagation in conventional DFE’s, a recently-
proposed technique is the canonical DFE of [3], so entitled because
the scheme approaches the performance of an ideal DFE at high
SNR’s. The equalizer minimizes error propagation by performing
pre-cursor and post-cursor ISI cancellation in separate stages. The
pre-cursor ISI cancellation is performed without delay, while the
feedback equalization is performed after channel-decoding and de-
interleaving, whence decoded codewords can be made arbitrarily
reliable. However, an entire set of interleaved codewords must
be decoded and de-interleaved before feedback-equalization can
begin; hence, the equalizer exhibits very high latency.

Motivated by ideas from both iterative and decision-feedback
equalization, we propose here an equalizer that attempts to achieve
the advantages of both techniques, while minimizing the drawbacks
to some extent. The scheme exhibits significantly lower latency
than the canonical DFE, while it outperforms the iterative linear
equalizer in both weak and strong ISI. In summary, the scheme
employs zero-latency hard-decision symbols in the feedback loop,
while the pre-cursor and post-cursor filters are updated with
extrinsic information from the channel decoder. To mitigate error-
propagation, interleaving is employed over a small set of code-
words. The idea is to treat feedback error-propagation as a form
of burst-noise or “fading”; hence, the interleaver here attempts to
“whiten” the burst-noise while also decorrelating extrinsic informa-
tion. To prevent error-propagation into adjacent sets of interleaved
codewords, a small amount of excess bandwidth is required in
the form of zero-padding (as in [3]). We find that, on channels
with weak ISI, the proposed equalizer out-performs the canonical-
DFE of [3]. In fact, it also out-performs the classical DFE with
ideal decision-feedback. On channels with severe ISI, the proposed
equalizer does not perform as well as either the ideal DFE or the
canonical DFE. However, it out-performs the linear turbo-equalizer
while maintaining moderate latency.

The remainder of the paper is organized as follows. The trans-
mission model is outlined in Section II. Section III briefly summa-
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rizes the ideas behind turbo and decision-feedback equalization.
Section IV details the proposed equalizer structure. Numerical
results on well-known channels are presented in Section V. Section
VI concludes the paper.

II. TRANSMITTER AND CHANNEL MODEL
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Fig. 1. Transmitter and channel.

The general transmitter model is depicted in Fig. 1. We assume
bi-level pulse-amplitude modulation (2-PAM), as in magnetic re-
coding channels. As a channel-code, simple regular LDPC codes
are employed. As will be explained in Section V, we investigate
well-known ISI channels in this paper. Let lch denote the channel
length, in terms of number of symbols, and let N similarly denote
the codeword length.
The interleaver, depicted in Fig. 1, is a key element that

varies widely depending on the equalization scheme. In linear
turbo equalizers, a random interleaver is necessary to decorrelate
extrinsic information within a single N -element vector. For other
schemes, a block interleaver spanning a number of codewords,
say M codewords, is required. Depending on the equalizer, the
transmitter also pads a small number of zero-amplitude symbols
between codewords, which can be viewed as an excess-bandwidth
factor. After interleaving, zero-padding, and parallel-to-serial con-
version, let x(n) denote a vector of contiguous 2-PAM symbols
(not necessarily N symbols long) at symbol interval n. Then, the
system model can be expressed as

y(n) = Hx(n) + w(n) , (1)

where H denotes the convolutional channel matrix, and w(n)

represents a vector of i.i.d samples from a white Gaussian process
with zero-mean and variance σ2

w.
At the receiver, the equalizer estimates each symbol x(n) with

x̂(n). The soft-output equalizer of [7], [8] expresses the estimate
as an a posteriori probability metric, taking the form

LE(x(n)) =
p(x(n) = +1 | x̂(n))

p(x(n) = −1 | x̂(n))
. (2)

Similarly, the soft channel-decoder computes a soft output for each
symbol, say LD(x(n)), which can then be used to estimate the a
priori probabilities p(xn = +1) and p(xn = −1) for the equalizer.

III. PREVIOUS EQUALIZATION SCHEMES

In this section, we briefly summarize the well-known linear turbo
equalizer and the DFE structure as they motivate the design of the
equalizer proposed in this paper.

A. Linear MMSE Turbo Equalization

As depicted in Fig. 2, the linear MMSE turbo equalizer is a time-
varying transversal filter c(n), updated with extrinsic information
from the channel decoder (cf. [7], [8]). In particular, the equalizer
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Fig. 2. Iterative linear equalizer from [7].

employs a priori probabilities to compute x̄(n) and v(n), which
represent the mean and variance of each symbol. Suppose the
equalizer operates on the set of contiguous received symbols
{y(n − l1) . . . y(n + l2)}. Let us denote the span of the filter as
l � l1 + l2 + 1. As shown in [7], the equalizer can be derived to
be

c(n) =
�
σ2

wIl×l + HV(n)HT + (1 − v(n))ssT
�−1

s , (3)

where s = H
�
01×(l2+lch+1) 1 01×l1

�
. The matrix V(n) is

diagonal, containing the terms v(n − lch − l2 + 1) . . . v(n + l1).
The equalizer output can be written as

x̂(n) = cT (n) [y(n) − Hx̄(n) + x̄(n)s] . (4)

As its name implies, a salient feature of the equalizer is that pre-
cursor and post-cursor ISI are minimized jointly via an MMSE
criterion. As depicted in Fig. 2, the equalizer proceeds by decoding
a codeword at a time, iteratively cancelling ISI by exchanging
soft information with the channel decoder via an interleaver and
deinterleaver. The mean and variance estimated are used to update
c(n). A variation of this idea is to minimize only the pre-cursor ISI,
aided with soft information, while the post-cursor ISI is cancelled
via a conventional feedback filter [7]. This notion is discussed in
more detail in Section IV.
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Fig. 3. Canonical DFE from [3].
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B. Classical and Canonical Decision Feedback Equalization

Rather than cancelling pre-cursor and post-cursor ISI jointly, the
classical DFE first attempts to convert the channel into a minimum-
phase response (i.e., a causal and monic channel). The ISI resulting
from the effective channel is cancelled using the feedback filter. But
for the fact that the tentative decisions from the slicer are error-
prone, the DFE would be asymptotically capacity-achieving at high
SNR’s (cf. [2]). However, it is worth recalling that the DFE is not
optimal at low SNR’s – even with ideal feedback decisions – due
to residual pre-cursor ISI at the slicer input.
The canonical DFE of [3] overcomes the problem of error-

propagation in classical DFE’s by performing feedforward and
feedback equalization separately, as depicted in Fig. 3. At the trans-
mitter, MCDFE codewords are block-interleaved and zero-padded,
employing the format shown in the lower half of the figure. At the
receiver, feedforward equalization is performed as in a classical
DFE. However, the outputs of the feedforward equalizer are stored
in a buffer until MCDFE codewords (in this case, LDPC codewords)
are received. Feedback equalization can begin only after the first
codeword has been block-deinterleaved and decoded. The format
ensures that, as each codeword is decoded, the only impairments at
the input to the channel decoder are white Gaussian channel noise
and residual pre-cursor ISI (cf. [3]). In effect, the channel-decoder
assumes the role of the slicer in the classical DFE, albeit with vastly
increased accuracy since “slicing” is performed on N -symbol
codewords. However, since each interleaved set of codewords is
N × (MCDFE + lch − 1) symbols long, the latency of the scheme
becomes high.
The zero-padding ensures that each interleaved codeword ex-

periences no post-cursor ISI. However, the zero-padding must be
viewed as an excess-bandwidth factor, viz.,

ηCDFE =
lch − 1

MCDFE
, (5)

where lch is the channel length. If we desire ηCDFE → 0, it is clear
that MCDFE → ∞, which implies that bandwidth efficiency comes
at the expense of increased latency.

IV. ITERATIVE DFE WITH HARD AND SOFT DECISIONS
The ideas behind the linear MMSE iterative equalizer were

extended to the classical DFE in [7], resulting in an iterative DFE.
However, the equalizer was observed to perform poorly in relation
to the linear turbo equalizer. In this section, we extend the scheme
to show that good results can be obtained. We first summarize the
main idea of an iterative DFE based on the development in Section
III-A. As with the linear equalizer, the feedforward equalizer is
updated with extrinsic information from the channel decoder at
each symbol interval. Naturally, the feedback filter must also be
updated as the post-cursor portion of h(n)∗c(n). Here, “∗” denotes
time-domain convolution. With l2 = 0, the feedback vector can be
expressed as a combination of soft and hard decisions, viz.,

x̄(n) =
�
x′(n − lch + 1) . . . x′(n − 1) x̄(n) . . . x̄(n + N − 1)

�
,

where x′(n− lch +1) . . . x′(n−1) denote the hard-decisions from
the slicer. If the hard-decisions can be assumed to be correct, then

the matrix V(n) described in Section III-A is a diagonal matrix
with entries

�
01×(M−1) v(n) v(n + 1) . . . v(n + N − 1)

�
on the

diagonal. As with the linear equalizer, we set x̄(n) = 0 and
v(n) = 1 to ensure that the x̂(n) and LD(x(n)) are independent.
The key idea of the iterative DFE is to cancel pre-cursor ISI by
taking advantage of extrinsic information, and then to cancel the
remaining post-cursor ISI using hard-decisions. Despite its intuitive
appeal, the iterative DFE of [7] was observed to perform poorly
due to error-prone decisions from the slicer.
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Fig. 4. Proposed hard- and soft-decision equalizer.

Consider now the equalizer shown in Fig. 4. The pre-cursor and
post-cursor filters still operate as described previously; however,
the extrinsic information is exchanged with the channel-decoder
in a novel format. Although the feedback loop introduces error-
propogation due to hard-decision errors, the interleaver treats the
errors as a form of burst-noise, and “whitens” the noise into the
channel decoder. Since multiple codewords are interleaved, the
interleaver also assumes the more conventional role of decor-
relating the extrinsic information. As in the canonical DFE, a
small amount of zero-padding between sets of interleaved symbols
prevents errors from propagating infinitely. Unlike the canonical
DFE, the equalizer does not depend on the channel decoder for
hard decisions. The latency, therefore, is much lower than that of
the canonical DFE.
The excess bandwidth required to support the equalizer can be

expressed as

ηturbo-DFE =
lch − 1

N
, (6)

where N is the codeword length as defined previously. Notice that,
to obtain ηturbo-DFE → 0, we must increase codeword lengthN → ∞,
rather than increase interleaver depth as with the canonical DFE.
Although increasing N also increases latency, it also permits more
powerful channel-codes to be employed. Moreover, suppose we
compare the proposed equalizer and the CDFE by operating at
exactly the same rate, i.e., ηturbo-DFE = ηCDFE, while employing the
same channel-code. Then, we must have MCDFE := N to maintain
the same data-rate. Since N is usually on the order of hundreds
or thousands of bits, it is evident that the CDFE incurs very high
latency compared to the proposed scheme.

2907



0 1 2 3 4 5 6 7 8
10−10

10−8

10−6

10−4

10−2

100

SNR

B
E

R

Linear turbo−equalizer, 0.7Kbit latency, 10 iter
Proposed equalizer, 3.5Kbit latency, 10 iter
DFE with perfect feedback, 0.7Kbit latency
Canonical equalizer [4], 496Kbit latency

(a) Performance on mild ISI channel A of [6].

0 5 10 15 20 25
10−10

10−8

10−6

10−4

10−2

100

SNR

B
E

R

Linear turbo−equalizer, 0.7Kbit latency, 10 iter
Proposed equalizer, 7Kbit latency, 10 iter
DFE with perfect feedback, 0.7Kbit latency
Canonical equalizer [4], 496Kbit latency

(b) Performance on severe ISI channel C of [6].

Fig. 5. Continuous lines show performance with a rate-3/4 LDPC code. Dotted lines show performance with a rate-1/3 LDPC code of same length.

Compared to the classical DFE with perfect feedback, the
proposed equalizer has the advantage of superior pre-cursor ISI
cancellation due to the extrinsic information from the channel-
decoder. The drawback of the proposed scheme is, naturally, the
hard-decision errors in the feedback loop. Thus, the role of the
interleaver is crucial to the operation of the entire receiver.

V. SIMULATION RESULTS

To evaluate the performance of the equalizers, we investigate
the channels A and C, first defined in [6] and also employed in
[4], [7]. Channel A exhibits the least amount of ISI, while C

exhibits the strongest as it contains a spectral-null in the mid-
band region. For the channel-code, we consider two types of
codes: a relatively high-rate (rate-3/4) LDPC code and a low-rate
(rate-1/3) LDPC code from [1]. Both codes have same length of
704 bits. To our knowledge, this family of codes exhibits best
performance among regular LDPC codes. The canonical DFE and
the proposed scheme are assumed to operate at the same data-rate
with ηturbo-DFE = ηCDFE. For channels A and C, this corresponds
to excess bandwidths of 1.2% and 0.57% respectively. Naturally,
the linear turbo equalizer and the classical DFE do not require
excess-bandwidth for ISI cancellation. In practice, some excess-
bandwidth is desirable for timing and acquisition. Fig. 5(a) depicts
the performance of all the equalization schemes on channel A. The
linear turbo equalizer performs well after 10 iterations, and the
BER plot is almost identical to that of the idealized DFE and the
canonical DFE. However, the proposed equalizer performs about 1
dB better. Although its interleaver depth of 5 results in a latency
of 3.5 Kbit, this latency is far below that of the canonical DFE.
Fig. 5(b) depicts the performance of the schemes on channel

C. The linear turbo equalizer exhibits relatively poor performance
on this channel. Similar results have also been observed in [5] for
magnetic channels. The proposed equalizer, with Mturbo-DFE = 10

(7 Kbit latency), outperforms the linear turbo equalizer by a
significant margin for both low-rate and high-rate codes. However,
both the ideal DFE and canonical DFE significantly outperform the
proposed equalizer by several dB. On the other hand, notice that

the CDFE exhibits a latency approximately 2 orders of magnitude
higher than the proposed scheme. The ideal DFE cannot, of course,
be realized unless precoding schemes are employed to cancel post-
cursor ISI a priori. However, this would raise further complica-
tions, such as the need for channel knowledge at the transmitter.
Moreover, schemes such as Tomlinson precoding (cf. [6]) require
systems with multi-level modulation.

VI. CONCLUSION
We have proposed an iterative equalization scheme that em-

ploys extrinsic information to cancel pre-cursor ISI, and imperfect
decision feedback to cancel post-cursor ISI. The performance on
channels with weak ISI is promising, as it outperforms other well-
known schemes. In severe ISI, the scheme outperforms linear turbo
equalizers, although it does not perform as well as the canonical
DFE or the ideal DFE. In all cases, the latency of the proposed
scheme is much lower than that of the canonical DFE.
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