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ABSTRACT

We show how to apply FrequencyDomain Equalization (FDE)
to precoded Continuous Phase Modulation (CPM) systems. It
is well known that differential precoding can be applied to the
speci c, popular class of CPM schemes with modulation in-
dex h = 1/2Q, where Q is any integer. This precoding halves
the bit error rate (BER) compared to nonprecoded CPM with-
out any overhead or complexity increase. We apply FDE to a
block-based precoded CPM system. Therefore, we show that
in addition to a cyclic pre x, two subblocks of data-dependent
symbols have to be inserted in each block to cope with the
memory in the CPM signal and to enable correct decoding
by the receiver. We explain how to calculate these subblocks.
Simulation results in a 60 GHz environment con rm that the
BER is halved by precoding, and that this precoding is com-
patible with FDE using our new technique.

Index Terms— Continuous Phase Modulation (CPM), Fre-
quency Domain Equalization (FDE), precoding, Laurent de-
composition, 60 GHz

1. INTRODUCTION

We are witnessing an explosive growth in the demand for
wireless connectivity. Short range wireless links will soon
be expected to deliver bit rates of over 2 Gbits/s. Worldwide,
recent regulation assigned a 3 GHz or wider frequency band
at 60 GHz to this kind of applications [1].

Chips for mobile devices need to be power ef cient. There-
fore, a suitable modulation technique for 60 GHz transceivers
should allow an ef cient operation of the power ampli er
(PA) to deal with the high path loss. Moreover, these chips
need to be cheap so the modulation technique should have
a high level of immunity to analog front-end nonidealities.
Continuous Phase Modulated (CPM) signals possess these
properties. They have a perfectly constant envelope which
makes them much more favorable than Orthogonal Frequency
Division Multiplexing (OFDM) as cheap, power ef cient non-
linear PA’s can be used instead of expensive, power inef -

∗W. Van Thillo thanks the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen) for funding
this PhD research.

cient linear ones [2]. They are also more robust against other
front-end imperfections such as phase noise and analog-to-
digital converter clipping and quantization [3]. Moreover,
they combine attractive spectral properties with excellent Bit
Error Rate (BER) performance [4].

The typical 60 GHz channel is severely frequency-selective
for the targeted signal bandwidth. Equalizing such channels
in the frequency domain (FD) rather than in the time do-
main (TD) can signi cantly lower the computational com-
plexity [2]. Therefore, we perform frequency domain equal-
ization (FDE) of CPM signals as described in [5]. It is known
that just the insertion of a cyclic pre x (CP) is not suf cient
to make the convolution of a CPM signal with a linear chan-
nel appear to be a cyclic convolution, enabling FDE with one
complex multiplication per sample [6]. An extra subblock,
below called intra x, has to be inserted in each block to deal
with the memory in the CPM signal.

In this paper, we apply FDE to differentially precoded
CPM signals. This precoding can be used with the speci c,
popular class of CPM schemes with modulation index h =
1/2Q, where Q is any integer [7]. It approximately halves
the bit error rate compared to nonprecoded CPM without any
extra overhead or complexity increase. We show that two in-
tra xes are needed to enable the correct decoding of precoded
blocks of CPM symbols. One intra x has to be inserted in the
CP, and another one in the remainder of the block, similar to
what is done in [8] for nonprecoded CPM. It is shown how
these intra xes have to be calculated.

The paper is organised as follows. In Section 2, CPM is
brie y introduced. Precoding of CPM signals is explained
in Section 3. Our approach for combining precoded CPM
with FDE is presented in Section 4. Simulation results are
discussed in Section 5 and conclusions are drawn in Section 6.

Below, vectors are represented by boldface letters x. The
nth element of a vector x is xn.

2. CONTINUOUS PHASE MODULATION

A transmitted CPM signal has the form:

s(t, a) =

√
2ES

T
ej φ(t,a) (1)
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where a contains the sequence of M -ary data symbols an ∈
{±1,±3, ...,±(M − 1)} [4]. The symbol duration is T and
ES is the energy per symbol, here normalized to ES = 1.
The transmitted information is contained in the phase:

φ(t, a) = 2πh
∑

n

an · q(t− nT ) (2)

where h is the modulation index and q(t) is the phase re-
sponse, related to the frequency response f(t) by the relation-
ship q(t) =

∫ t

−∞ f(τ) dτ . The pulse f(t) is a smooth pulse
shape over a nite time interval 0 ≤ t ≤ LT and zero out-
side, where L is an integer. The function f(t) is normalized
such that

∫∞
−∞ f(t) dt = 1

2 . The phase φ(t, a) during interval
nT ≤ t ≤ (n + 1)T can then also be written as:

φ(t, a) = hπ

n−L∑
i=0

ai + 2πh

n∑
i=n−L+1

ai · q(t− iT ). (3)

In this expression, we distinguish two types of memory in the
CPM signal: the phase state θn = hπ

∑n−L
i=0 ai mod 2π,

and the correlative state σn = (an−1, an−2, . . . , an−L+1).
Together, they form the state of the CPM signal χn = (θn, σn)
which captures all the memory. This memory has to be taken
into account to enable FDE, as we will see below.

Exploiting the Laurent decomposition [9], we can write
(1) as a sum of P = 2L−1 linearly modulated signals:

s(t) =
P−1∑
p=0

∑
n

bp,n lp(t− nT ) (4)

where the pseudocoef cients bp,n are given by

bp,n = exp

[
jπh

( n∑
i=0

ai −
L−1∑
i=1

an−i βp,i

)]
(5)

with βp,i the ith bit in the binary representation of p (p =∑L−1
i=1 2i−1 βp,i). The Laurent pulses lp(t), p = 0, ..., P − 1

are real, with lp(t) = 0 for t < 0 and t > (L + 1)T . We
will use the linear representation of CPM (4) to construct the
receiver.

3. RECEIVER FOR PRECODED CPM

In this section, we explain how the sent symbols a can be ex-
tracted from the received CPM waveform. Using (4), a Viterbi
processor can generate an estimate of b0 [10]. We then show
how an estimate of a can be extracted from this estimate b̂0,
both in the nonprecoded and in the precoded case [7].

3.1. Demodulator

It is well known [10] that a Viterbi receiver can be used to
generate a maximum likelihood estimate of the rst pseudo-
coef cient

b̂0,n = exp

(
jπh

n∑
i=0

âi

)
. (6)

As stated in [7], a can be uniquely determined by b0. We can
therefore extract the estimate of the input symbols â from the
estimate b̂0 without losing any information.

3.2. Detector without Precoding

If we do not apply any precoding, the detection goes as fol-
lows. Equation (6) can be written as:

b̂0,n = exp

(
jπh

n−1∑
i=0

âi

)
· exp (jπhân) (7)

= b̂0,n−1 · exp (jπhân)

and as
∣∣∣b̂0,n−1

∣∣∣ = 1, b̂−1
0,n−1 = b̂∗0,n−1 so

exp (jπhân) = b̂0,n · b̂∗0,n−1. (8)

This equation allows us to extract â from b̂0. In the very
popular case of h = 1/2 for instance, the input symbols can
be estimated as

ân = −j · b̂0,n · b̂∗0,n−1. (9)

One error in b̂0 will on average cause two errors in â. We
want to avoid this by applying a precoding.

3.3. Detector with Precoding

In [7] it is shown that differential encoding can be applied to
the class of binary CPM signals with

h = 1/(2Q) (10)

where Q is any integer, to annihilate the inherent differential
decoding of CPM signals and thus improve error performance
for coherent detection. In the precoder, the information bits
i, in ∈ {0, 1} are rst differentially encoded to obtain the
sequence p, pn ∈ {0, 1}:

pn = in ⊕ in−1 (11)

where ⊕ represents the modulo 2 addition. This sequence is
then mapped on the CPM symbols a, an ∈ {−1, 1}:

an = 2pn − 1 = 2(in ⊕ in−1)− 1. (12)

Substituting this in (6) yields

b̂0,n = exp

(
j

π

2Q

n∑
i=0

2(̂ii ⊕ îi−1)− 1

)

= exp

(
−j

π

2Q
n

)
· exp

(
j

π

Q

n∑
i=0

(̂ii ⊕ îi−1)

)
. (13)

If we assume (explained in the next section)

î−1 = 0 (14)
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Fig. 1. Structure of an overall data block a(l).

and as îi ⊕ îi = 0, (13) becomes:

b̂0,n = exp

(
−j

π

2Q
n

)
· exp

(
j

π

Q
în

)
. (15)

This equation allows us to extract the estimate of the informa-
tion bits î from b̂0. Contrary to (9), one error in b̂0 will now
on average cause only one error in î. This is what we wanted
to obtain by precoding the information bits. For h = 1/2 for
instance, it can be seen that

în =
b̂0,n · ej π

2 n − 1
2

. (16)

In the next section, we investigate the compatibility of this
precoding with FDE. The FDE is done as described in [5].

4. FDE FOR PRECODED CPM

We now consider a block-based CPM system. Parameters
with respect to the lth block are denoted with a superscript (l).
The input data stream is cut in blocks

[
a

(l)
d1 ; a(l)

d2

]
where a

(l)
d1

and a
(l)
d2 have length N −K −NP and NP −K respectively.

Here, N is the size of the blocks to be equalized (chosen as a
power of 2 for ef cient transformation into the frequency do-
main), NP is the length of the CP and K is the intra x length
(further explained below). To avoid inter-block interference,
NP is chosen such that NP > LC where LCT is the length
of the channel delay spread.

For CPM, attaching a CP is not suf cient [8]. To construct
a data block which yields a cyclic CPM signal we also have
to take the memory introduced by the CPM modulation into
account. This memory is re ected by the state χ

(l)
n of the

modulator at symbol interval n in block l [6]. From Fig. 1 it
can be seen that the condition to get a cyclic CPM signal with
period NT after discarding the CP is

χ
(l)
NP

= χ
(l)
NT

. (17)

An extra constraint is imposed by the precoding. At the
beginning of each block (i.e. at n = 0), we initialize the
encoder (11) by setting i−1 = 0, such that assumption (14)
is valid. To be able to start decoding correctly at the receiver
after the deletion of the CP (i.e. at n = NP ), we have to bring

the transmitter in this same state at n = NP . We therefore
also have to satisfy

χ
(l)
0 = χ

(l)
NP

. (18)

As stated in [8], the memory of a CPM modulator can be
ushed by inserting an intra x of K data-dependent symbols,

where K ≥ max
{
L,

⌈
p−1
M−1

⌉}
, with h = m/p and m and p

are relatively prime integers. In other words, we can force the
modulator into a certain state at a certain point by inserting a
correctly calculated intra x. To satisfy (18), the intra x a

(l)
i2

has to be calculated such that

hπ

(
NP−K−1∑

n=0

a
(l)
d2,n +

K−1∑
n=0

a
(l)
i2,n

)
= 0 mod 2π. (19)

The intra x (second term in (19)) is thus calculated such that
it undoes the phase rotation caused by a

(l)
d2 ( rst term in (19)).

Therefore, χ
(l)
0 = χ

(l)
NP

and also χ
(l)
N = χ

(l)
NT

. Inserting the

latter equation in (17) yields the condition χ
(l)
NP

= χ
(l)
N , which

can be satis ed by choosing the rst intra x a
(l)
i1 to satisfy

hπ

(
N−NP−2K−1∑

n=0

a
(l)
d1,n +

K−1∑
n=0

a
(l)
i1,n

)
= 0 mod 2π.

(20)

Finally, the CP is inserted. The last NP symbols
[
a

(l)
d2 ; a(l)

i2

]
of each block are copied in front of the block, creating blocks
of length NT = N + NP at the transmitter. The complete
system model is shown in Fig. 2.

5. SIMULATION RESULTS

For simulations, the binary 3-RC CPM scheme (f(t) = (1 −
cos 2πt

LT )/2LT with L = 3) was chosen. Results for modula-
tion index h = 0.25 and h = 0.5 are presented. A huge band-
width is available at 60 GHz, so the bit rate is Rb = 1 Gbits/s.
For this system, the channel is severely frequency-selective
so a blocksize N = 256 and CP length NP = 64 are chosen.
The receiver lowpass (LP) lter is modeled as a raised cosine
lter with roll-off factor R = 0.5. Details about the simulated

60 GHz multipath environment can be found in [5].
Fig. 3 shows the BER of the nonprecoded (solid lines)

and the precoded (dashed lines) h = 0.25 and h = 0.5 CPM
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Fig. 2. System model with block sizes at different points of the transmitter mentioned. The upper part represents the transmitter
and the wireless channel, the lower part is the receiver.
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Fig. 3. BER performance of the 3RC, h = 0.5 and h = 0.25
schemes in a 60 GHz environment, both nonprecoded (solid
lines) and precoded (dashed lines).

schemes in a 60 GHz environment. The Minimum Mean
Square Error (MMSE) frequency domain channel equalizer
described in [5] is used. As can be seen, precoding almost
exactly reduces the BER by half.

6. CONCLUSIONS

We have shown how to enable FDE for differentially precoded
CPM systems. More precisely, we have developed a block
construction that satis es two requirements. First, the CPM
blocks should be cyclic to enable FDE. This can be achieved
by inserting, in addition to a cyclic pre x, a subblock of data-
dependent symbols in each block. This subblock, called in-
tra x, copes with the memory in the CPM signal. Second, the
transmitter should be forced into the same state at the begin-
ning of the block and right after the cyclic pre x to enable
correct decoding by the receiver. We have shown that this can
be done by inserting a second intra x in each block. It was
also explained how these intra xes should be calculated.

To validate our new algorithm, we have presented simu-
lation results in a 60 GHz enviroment. These results con rm
that the BER is halved by precoding, and that the precoding is
compatible with FDE thanks to our new block construction.
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[8] J. Tan and G.L. Stüber, “Frequency domain equalization
for continuous phase modulation,” IEEE Trans. Wire-
less Commun., vol. 4, no. 5, pp. 2479–2490, September
2005.

[9] P.A. Laurent, “Exact and approximate construction of
digital phase modulations by superposition of amplitude
modulated pulses (AMP),” IEEE Trans. Commun., vol.
34, no. 2, pp. 150–160, February 1986.

[10] G.K. Kaleh, “Simple coherent receivers for partial re-
sponse continuous phase modulation,” IEEE J. Sel. Ar-
eas Commun., vol. 7, no. 9, pp. 1427–1436, December
1989.

2904


