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ABSTRACT
We consider the communication of digital signals over a multiple-
input multiple-output wireless channel, using a linear precoder at
the transmitter and a non-linear decision feedback equalizer at the
receiver. This receiver structure can exploit the signal constellation
properties by using successive quantization and interference cancel-
lation. Recently, optimal precoder designs have been found for a
wide range of performance measures assuming that perfect channel-
state information (CSI) is available. Herein, we propose a design
taking CSI uncertainty into account by utilizing the first and sec-
ond order statistics of the channel. The resulting precoder exhibits
improved performance compared to similar methods based on long-
term statistics.

Index Terms— MIMO systems, Communication systems, De-
cision feedback equalizers, Fading channels, Channel coding

1. INTRODUCTION

Multiple-input multiple-output (MIMO) systems arise in digital
communications when modeling a link with multiple receive and
transmit antennas, or systems with dispersive channels. With the
appropriate signal processing, MIMO systems allow us to operate at
very high data rates by multiplexing data over parallel sub-channels.
An optimal design of codebooks for MIMO communications was
presented in [1]. These codewords are infinitely long and the de-
sign requires perfect channel-state information (CSI) at the receiver
as well as the transmitter. The design of practical and efficient code-
books and transmission schemes for MIMO systems has received
much interest in recent years [2, 3, 4].

Decision feedback equalization (DFE) in conjunction with lin-
ear precoding is a promising technology that combines high per-
formance with low complexity. Recently, a DFE design was pre-
sented [5, 6, 7] – the uniform channel decomposition (UCD) – that
is optimal for many well-known performance measures simultane-
ously, including the average mean squared error (MSE) and bit error
rate (BER). The scheme relies on perfect channel-state information
at both the transmitter and receiver.

Channel-state information (CSI) can be estimated at the receiver
using training sequences, pilot symbols, or decision feedback esti-
mation. For slow-fading channels the receiver-side CSI (RX-CSI)
is commonly assumed perfect. Transmitter-side CSI (TX-CSI), on
the other hand, is often difficult to acquire with high accuracy. TX-
CSI may be obtained by means of feedback from the receiver – for
which errors due to delay and quantization are introduced – or, in
a frequency/time division-duplex system, by local estimation using
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Fig. 1. Decision Feedback System.

the reciprocity principle. The latter is problematic since uplink and
downlink cannot occupy the same frequency and time slots. Conse-
quently, it is reasonable to assume that the TX-CSI is of lower ac-
curacy than the RX-CSI. A practical transmission scenario of inter-
est assumes long-term channel statistics as TX-CSI, with a non-zero
mean if there is a dominant path – e.g. line-of-sight – between the
transmitter and receiver. This particular scenario has been studied
previously in [8].

In this paper, we extend the previous results on the minimum
MSE DFE [5, 6, 7] to account for long-term TX-CSI. This calls for a
random modeling of the channel at the transmitter. By shifting focus
to the expected performance with respect to the random channel,
the uncertainty of the channel is brought into the joint transmitter-
receiver design. We derive an adaptive design that applies to the
wide range of performance measures previously considered for the
perfect-CSI UCD. The performance of this design is examined by
means of numerical simulations and compared against similar, long-
term CSI designs [8, 9].

The following notation is used throughout the paper. The com-
plex field is denoted by C. Matrices and vectors are typeset with
upper-case and lower-case boldface letters, respectively. The ith col-
umn of a matrixA is denoted ai, andAi is the matrix [a1 . . . ai].
Aij and [A]ij refer to the (i,j) element A. If Aij = f(i, j),
then we write A = (f(i, j))ij . The identity matrix is I , and
0 is a matrix of zeros. vec (·) is the vector formed by column-
stacking vectorization of a matrix, and the trace is tr (·). Her-
mitian transpose, complex conjugate, and transpose are denoted
[·]H, [·]∗, and [·]T, respectively. The expectation of a random entity
is E (·), and the covariance matrix of a random vector a is defined
as E

�
(a − E (a)) · (a − E (a))H

�
. CN (b, A) is the multivariate

complex Gaussian circularly symmetric distribution with mean b and
covarianceA. Also, we write (·)+ formax(0, ·), and the Kronecker
product of matrices is denoted ⊗. The matrix A1/2 is any matrix
satisfying (A1/2)

H
A1/2 = A. Finally, the function [F ◦ exp](x) is

defined as F(ex).

2. SYSTEM AND CHANNEL MODEL

Consider a MIMO communication system with nT transmitting an-
tennas and nR receiving antennas over a flat-fading channel. The
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system is modeled using the linear-regression model

y = HP x + n, (1)

where x ∈ C
L is a vector of data symbols, P ∈ C

nT ×L is a linear
precoding matrix,H ∈ C

nR×nT is the channel matrix, n ∈ C
nR is

a vector with additive noise, and y ∈ C
nR is the vector of received

signals. Without loss of generality, we normalize the input signal as
E
�
xxH

�
= I . The additive noise is zero mean and has covariance

matrix Rn according to n ∼ CN (0, Rn), and we further assume
that x and n are uncorrelated, i.e. E

�
xnH

�
= 0.

Using a DFE receiver as shown in Fig. 1, and assuming no error
propagation [5, 6, 7], the signal estimate at the receiver, x̂, can be
written as

x̂ = W
H
y −Bx

=
�
W

H
HP −B

�
x + W

H
n,

(2)

whereW H ∈ C
L×nR is the equalizing filter, and B ∈ C

L×L is an
upper triangular feedback matrix with zero diagonal.

The objective is to jointly design the precoder P , equalizer ma-
trixW H, and feedback matrixB, given long-term TX-CSI and per-
fect RX-CSI. Irrespective of the transmission scenario, we assume
that the first and second-order statistics of the channel comprise the
CSI available at the transmitter. Assuming further that the distribu-
tion of the channel,H , is a complex Gaussian results in the follow-
ing channel model,

vec (H) ∼ CN
�
vec

�
Ĥ
�

, RH

�
. (3)

This is the well-known MIMO Ricean-fading channel model. The
first-order statistic is often interpreted as a low-rank line-of-sight
component. In the special case when Ĥ = 0, the model reduces
to a Rayleigh-fading channel.

Various measurement campaigns, e.g. [10, 11], have revealed
that in some cases, irrespective of the indices, E

�
hih

H
j

� ∝
E
�
hkhH

l

�
, approximately, and likewise for the rows of H . In ma-

trix notation, this implies that the channel covariance matrix has a
Kronecker structure according to

RH = RTx ⊗RRx. (4)

The matrices RRx ∈ C
nR×nR and RTx ∈ C

nT ×nT represent the
channel covariance seen from the receiver side and the transmitter
side, respectively.

3. PROBLEM FORMULATION

Designing a DFE system amounts to selecting a precoder P , an
equalizer W H, and a feedback matrix B. The choice of these ma-
trices should – in some sense – be optimal in terms of the transmit
power used and the quality of the received signal x̂.

One common approach to jointly design the transmitter and re-
ceiver is to consider the constrained optimization problem

min
P ,W ,B

F(P , W , B), tr
�
P P

H
�
≤ Pmax, (5)

where F is a cost function measuring the degradation of the signal
as it is sent through the channel. The constraint is a bound on the
transmitted power P = E

�‖P x‖2� = tr
�
P P H

�
.

When perfect TX-CSI is available, F is commonly set to be
a function of the MSEs of the individual data streams [5, 7], i.e.

F = F(E11, . . . , ELL). The MSEs are identified as the diagonal
elements of the MSE matrix

E = E

�
(x̂ − x) (x̂ − x)H

�

=
�
W

H
HP − (B + I)

� �
W

H
HP − (B + I)

�H

+ W
H
RnW

(6)

with the expectation taken over the signal x and the noise n.
When channel uncertainty enters the picture, it would be desir-

able to consider the channel expecation EH (F) of the cost function.
Striving to keep F unspecified – in order to render the resulting de-
sign applicable to a large class of cost functions – we shall assume
that the function is linear in the region of interest to achieve tractabil-
ity. Thus, the problem formulation that we shall adopt is

min
P ,W ,B

F(EH (E11) , . . . , EH (ELL)), tr
�
P P

H
�
≤ Pmax. (7)

Note that the choice of an MSE-based cost function F is not
to be regarded as a restriction. In many cases, both the bit error
rate (BER) and the signal to noise ratio (SNR) can be expressed as
functions of the MSEs, see e.g. [5]. Since the cost function F is
arbitrary, functions based on BER and SNR are already incorporated
into the framework.

3.1. DFE with Perfect TX-CSI

We shall briefly review some recently published results on how the
optimal transmitter and receiver matrices can be determined when
perfect TX-CSI is available. In this setting, the optimization problem
(7) considered is reduced to

min
P ,W ,B

F(E11, . . . , ELL), tr
�
P P

H
�
≤ Pmax. (8)

These results will be used for solving the corresponding problem
with long-term TX-CSI. We refer to [5] for a more complete presen-
tation.

3.1.1. DFE Receiver

Since F is a function of the MSEs, we shall naturally assume that
it is increasing in each argument. It turns out that this condition
provides sufficient information to express the minimum MSE-DFE
receiver in terms of the precoding matrix P and the fixed channel
H . By inspection of (6), it is clear that the decision feedback matrix
B can be chosen to simultaneously minimize each Eii. Explicitly,
the non-trivial elements of the strictly upper triangular matrixB co-
incide with those of the matrixW HHP , i.e.,

B = U
�
W

H
HP

�
, (9)

rendering the matrix W HHP − (B + I) in (6) lower triangular.
Updating the MSEs by substituting accordingly yields

Eii = wi
H
�

HP iP
H
i H

H + Rn

�
wi

−wi
H
Hpi − p

H
i H

H
wi + 1.

(10)

Note that the dependence of Eii onW is constrained to its ith col-
umnwi. Setting the gradient ofEii with respect towi

∗ to zero then
provides a closed-form expression for the equalizer

wi =
�

HP iP
H
i H

H + Rn

�
−1

Hpi. (11)
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Thus, the minimum MSE receiver depends on the specific choice of
cost function F only via the linear precoder P . Assuming that this
matrix is known at the receiver, either by direct computation or by
transmitting the information over the channel, the ith column ofW
and ith row ofB are completely determined by minimizing the MSE
of the corresponding data stream.

3.1.2. Linear Precoder

The problem of determining P for an arbitrary cost function F has
not been solved. However, the application of majorization theory has
resulted in solutions for two important classes of functions, incor-
porating many of the most common performance measures. When
F ◦ exp is Schur concave – e.g. product of MSEs, negative sum
of SNRs – then B becomes zero and the optimal solution coincides
with the corresponding linear design. If F ◦ exp is Schur convex –
e.g. average BER, sum of MSEs – then there is a precoder P that
simultaneously minimizes every function in this class. It is obtained
by solving

P = V diag (
√

p) V P
H
, (12)

which uses the singular value decomposition H̃ = UΣV H, where
H̃ = Rn

−1/2H . The power allocation vector p is given by the
standard waterfilling solution

pi =

�
μ− 1

Σ
2
ii

�+

, Pmax =

rank(H̃ )�
i=1

pi, (13)

and the right singular matrix V P is obtained via the equal-diagonal
generalized triangular decomposition [12]

�
UΣ diag

�√
p
�

I

�
= QRV P . (14)

3.2. DFE with Long-term TX-CSI

We shall return to the random-channel problem formulation in (7).
However, since we assume that perfect CSI is available on the re-
ceiver side, the equalizer W and feedback matrix B are given by
(11) and (9), respectively, for each channel realization H and pre-
coder P . The transmitter on the other hand, considers the expecta-
tion EH (Eii) of the MSEs, which at this point are given by

Eii = 1− pi
H
H

H
�
HP iP i

H
H

H + Rn

	
−1

Hpi. (15)

A slight rearrangement based on the matrix-inversion lemma gives
the following relation

Eii =

��
I + P i

H
H

H
Rn

−1
HP i

	
−1
�

ii

. (16)

Computing the expectation of the MSEs above, with respect to the
channel, is non-trivial for the general MIMO Ricean channel that is
considered. Therefore, we shall continue the optimization by consid-
ering, instead, a lower bound on the expectation. Matrix-convexity
of the matrix inverse can be utilized to find such a bound, as was
done in the related linear design problem [9]. Explicitly, for any
complex vector z and random matrixA with finite expectation,

z
H �

E
�
(A)−1�− (E (A))−1�

z ≥ 0. (17)

Letting z be the columns of the identity matrix I gives rise to the
inequality

E
�


A
−1�

ii

� ≥ 
(E (A))−1�
ii

. (18)

Applying this relation on the MSEs in (16) results in

E (Eii) = E

���
I + P i

H
H

H
Rn

−1
HP i

	
−1
�

ii

�

≥
��

I + P i
H
H̃

H
H̃P i

	
−1
�

ii

,

(19)

where H̃ is implicitly given by

H̃
H
H̃ = E

�
H

H
Rn

−1
H
	

= Ĥ
H
Rn

−1
Ĥ

+

�
 nR�

k,l=1

[Rn
−1]kl[RH](l+nR[j−1]),(k+nR[i−1])

�
�

ij

.

(20)

In the special case with a channel covariance matrix having Kro-
necker structure,RH = RTx ⊗RRx, this reduces to

H̃
H
H̃ = Ĥ

H
Rn

−1
Ĥ + tr

�
RRxRn

−1�
RTx

T
. (21)

Note that the lower bounds on the expected MSEs (19) have the
same form as the MSEs with perfect TX-CSI (16). From this fact
we conclude that the proposed long-term precoder given Ĥ , RH,
and Rn coincides with the precoder with perfect TX-CSI (12) for
the modified channel H̃ in (20).

4. NUMERICAL RESULTS

This section presents simulation results that demonstrate the gains
attained by using long-term adaptive precoding designed for DFE.
Our precoder is compared with a previously proposed precoder [8],
designed with minimum MSE as objective. For comparison we also
include the well known V-BLAST scheme [2] (MMSE, without op-
timal detection ordering) that does not utilize TX-CSI, the hypo-
thetical case when the TX-CSI is perfect [5, 6, 7], and a precoder
designed for a linear MMSE receiver that (in some aspects) is sim-
ilar to ours [9]. Two different TX-CSI scenarios are considered. In
the first, Ricean statistics – comprised of a long term line-of-sight
component together with the correlation properties of the multi-path
components – are known at the transmitter. The second scenario
demonstrates a highly correlated Rayleigh fading channel where the
correlation matrix is known at the transmitter.

4.1. Ricean-fading channel with correlation
We consider a MIMO system of dimensionality nT = nR = L = 4.
Given the TX-CSI, ξ, the channel matrix is distributed according to

vec (H |ξ) = CN �
hRxh

H
Tx, RTx ⊗RRx

�
, (22)

where the line-of-sight component, hRxhHTx, is rank one. The steer-
ing vectors, hRx and hTx, are assumed to have a Vandermonde struc-
ture as

[hRx]n = σ exp(iαRxn),

[hTx]n = exp(iαTxn),

where σ2 ∈ [0, 1] defines the power in the line-of-sight component
and αRx, αTx define the direction-of-arrival at the receiver and trans-
mitter respectively. In the following example we use parameters
σ2 = 0.7, αRx = 0.2, and αTx = −0.5. The receiver-side corre-
lation matrix is defined as

RRx = RRx
H and [RRx]nm =

�
1− σ2ρ

m−n
Rx for m ≥ n.
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Fig. 2. Ricean-fading channel with correlation.

Below, we use the correlation coefficient ρRx = 0.8 e0.4i. The
transmitter-side correlation matrix, RTx, is defined similarly using
correlation coefficient ρTx = 0.8 ei.

Fig. 2 shows the comparison between the various precoders us-
ing QPSK symbols on all sub-channels. The BER was evaluated at
different SNR levels using Monte Carlo simulations. From the figure
we can conclude that the adaptive DFE precoder (LT DFE-1) outper-
forms the previously proposed DFE precoder (LT DFE-2) as well as
the V-BLAST scheme and the precoder designed for linear MMSE
detection (LT LIN). When perfect TX-CSI is available (ST DFE) the
performance of the DFE can be improved by an order of magnitude,
although the difference is small in the low-SNR region.

4.2. Rayleigh-fading channel with correlation

As in the previous example we consider a MIMO system of dimen-
sionality nT = nR = L = 4. This time however, the channel
mean component, Ĥ , is zero. For simplicity, we assume the same
Kronecker-structured covariance matrix. Given the TX-CSI, ξ, the
channel matrix is distributed according to

vec (H |ξ) = CN (0, RTx ⊗RRx) , (23)

where the transmit and receive correlation matrices are defined by
the correlation coefficients ρTx = 0.9 e0.5i and ρRx = 0.9 e1.5i re-
spectively. Fig. 3 shows the performance of the various precoders
using QPSK symbols on the sub-channels. Again, we conclude that
the adaptive DFE precoder outperforms the other adaptive precoders
and the V-BLAST scheme.

5. CONCLUSIONS

We have addressed the problem of linear precoding using long-
term channel statistics and assuming a non-linear decision feedback
equalizer at the receiver. A design taking CSI uncertainty into ac-
count by utilizing the first and second order statistics of the channel
has been proposed, and we demonstrated that the resulting precoder
exhibits improved performance compared to similar methods based
on long-term statistics.
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