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ABSTRACT

We study the joint optimization of the quantizer and the spatial Deci-
sion Feedback Equalizer (DFE) for the flat multi-input multi-output
(MIMO) channel with quantized outputs. Our design is based on a
minimum mean square error (MMSE) approach, taking into account
the effects of quantization. Our derivation does not make use of the
assumption of uncorrelated white quantization errors and considers
the correlations of the quantization error with the other signals of
the system. Through simulation, we compare the new DFE to the
conventional spatial DFE operating on quantized data in terms of
uncoded BER.

Index Terms— MIMO systems, Decision feedback equalizers,
Quantization

1. INTRODUCTION

It is well known that the use of multiple antennas at both sides of the
transmission link (MIMO systems) can improve the communication
performance dramatically. Many detection schemes have been pro-
posed to enable reliable communications in such systems. A pop-
ular suboptimal approach with low complexity is the spatial DFE
approach combined with ordering, known also as Vertical Bell Labs
Layered Space-Time (V-BLAST) system [1, 2]. However, most of
these contributions on receiver design for MIMO systems assume
that the receiver has access to the channel data with infinite preci-
sion. In practice, however, a quantizer is applied to the receive sig-
nal, so that the channel measurements can be processed in the digital
domain. The reliance on high-resolution analog-to-digital convert-
ers (ADCs) easily becomes unjustified as soon as we have to do with
high speed MIMO channels [3]. In this case, the needed high resolu-
tion ADCs are expensive and even no more feasible. In fact, in order
to reduce circuit complexity and save power and area, low resolution
ADCs have to be employed [4]. Therefore, the proposed receiver
designs do not necessarily have good performance when operating
on quantized data in a real system. In [3, 5], we study the effects
of quantization from an information theoretical point of view for
MIMO systems. Motivated by the same approach as in our recent
work [6], which concerns the linear MMSE receiver operating on
quantized data, we modify the well-known spatial DFE combined
with ordering for the quantized flat MIMO channel (later denoted
by DFEQ), taking into account the presence of the quantizer. Under
the choice of an optimal uniform/non-uniform scalar quantizer we
evaluate the resulting MSE between the estimated and the transmit-
ted symbols and we minimize it subject to the DFE detector. In our
model we assume perfect channel state information (CSI) at the re-
ceiver, which can be obtained even with coarse quantization [7].

Our paper is organized as follows. First we introduce the system
model and some notational issues. Section 3 reviews the conven-
tional MMSE-DFE approach. In section 4 we discuss the properties
of the chosen quantizer, then we derive the modified DFE receiver in
section 5. Finally, we present some simulation results in section 6.

2. SYSTEMMODEL AND NOTATION

We consider a point-to-point MIMO Gaussian channel where the
transmitter employs M antennas and the receiver has N antennas.
Fig. 1 shows the general form of a quantized MIMO system, where
H ∈ C

N×M is the channel matrix. The vector x ∈ C
M comprises

the M transmitted symbols, which are uncorrelated and have zero-
mean and covariance matrix Rxx = E[xxH] = σ2

xI. The vector η

refers to zero-mean complex circular Gaussian noise with covariance
Rηη = E[ηηH]. y ∈ C

N is the unquantized channel output:

y = Hx + η. (1)

In our system, the real parts yi,R and the imaginary parts yi,I of
the receive signals yi, 1 ≤ i ≤ N , are each quantized by a b-bit
resolution uniform/non-uniform scalar quantizer. Thus, the resulting
quantized signals read as:

ri,l = Q(yi,l) = yi,l + qi,l, l ∈ {R, I}, 1 ≤ i ≤ N, (2)

where Q(·) denotes the quantization operation and qi,l is the result-
ing quantization error. In the DFE architecture of Fig. 1, the matrix
G ∈ C

M×N represents the forward filter and F ∈ C
M×M the feed-

back filter with the following structures

F =

2
6664

0 0 . . . 0
f2,1 0 . . . 0

...
. . .

. . .
...

fM,1 . . . fM,M−1 0

3
7775 ∈ C

M×M
, (3)

G =

2
64

gT
1

...
gT

M

3
75 ∈ C

M×N
. (4)

In other words, gT
k is the k-th row of the receiver filter G and fk,j

is the entry at the k-th row and j-th column (k > j) of the feed-
back matrix F . The DFE feeds back the already detected symbols
as shown in Fig. 1 and subtracts the interference caused by these
symbols from the next input of the decision module, using a feed-
back matrix F . The decoding order is denoted by π, i.e. stream xπk

(with decoding order k) sees the interference caused by the streams
xπk+1

. . . xπK
. Therefore an inverse permutation π−1 is needed after

the detection module in order to get the streams in the original order.
The matrices F and G, together, delivers the estimate x̂πk

as

x̂πk
= g

T
kr −

k−1X
j=1

fk,j x̂πj . (5)

Our aim is to choose the quantizer, the receive matrix G, and the
feedback matrix F , minimizing the MSE=E[‖x̂−x‖22], taking into
account the quantization effect. Throughout this paper, rαβ denotes
E[αβ∗].. The operators (•)T, (•)H, (•)∗, Re(•), Im(•) stand for
transpose, Hermitian transpose, complex conjugate, real and imagi-
nary parts of a complex number, respectively.
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Fig. 1. Decision Feedback Equalizer on a Quantized MIMO Channel

3. REVIEW OF THE SPATIAL MMSE-DFE

We review the MMSE-DFE (or MMSE V-BLAST) algorithm in this
section while ignoring the quantization (i.e. r ≡ y). Let us first
consider the error signal at the k-th decoding step assuming that the
previous streams were correctly decoded

eπk
= xπk

− g
T
k(Hx + η) +

k−1X
j=1

fk,jxπj . (6)

Under these assumptions, it is easy to show by the KKT conditions
that, for given ordering π, the optimal forward and feedback matrices
minimizing each MSEk = E[|ek|2] individually (and thus the sum-
MSE) reads as

fk,j = g
T
khπj , and g

T
k = σ

2
xh

H
πk

T̄ k, (7)

where hπk
is the πk−th column of the channel matrix H , and

T̄ k =

 
σ

2
xHH

H − σ
2
x

k−1X
l=1

hπl
h

H
πl

+ Rηη

!−1

∈ C
N×N

. (8)

With these optimum matrices, the MSE of the symbol with decoding
order k reads as:

MSEπk
= σ

2
x − σ

4
xh

H
πk

T̄ khπk
, k ∈ {1, . . . , M}. (9)

Now, the problem of finding the optimal ordering π minimizing the
sum-MSE (

P
k MSEk) is NP hard, since we must check all M ! pos-

sible permutations. To reduce the complexity, V-BLAST minimizes
each summand successively, i. e., πk is chosen under the assumption
that π1, . . . , πk−1 are fixed

πk = arg min
i/∈{π1,...,πk−1}

1− σ
2
xh

H
i T̄ khi. (10)

4. OPTIMAL QUANTIZER

Each quantization process is given a distortion factor ρ
(i,l)
q to indi-

cate the relative amount of quantization noise generated, which is
defined as follows

ρ
(i,l)
q =

E[q2
i,l]

ryi,lyi,l

, (11)

where ryi,lyi,l
= E[y2

i,l] is the variance of yi,l and the distortion fac-
tor ρ

(i,l)
q depends on the number of quantization bits b, the quantizer

type (uniform or non-uniform) and the probability density function
of yi,l. Note that the signal-to-quantization noise ratio (SQNR) has
an inverse relationship with regard to the distortion factor

SQNR(i,l) =
1

ρ
(i,l)
q

. (12)

Similar to our work [6] concerning the Wiener filter for quantized
data, the uniform/non-uniform quantizer design is based on mini-
mizing the mean square error (distortion) between the input yi,l and
the output ri,l of each quantizer. In other words, the SQNR values

are maximized. Under this optimal design of the scalar finite resolu-
tion quantizer, whether uniform or not, the following equations hold
for all 0 ≤ i ≤ N , l ∈ {R, I} [8, 9]:

E[qi,l] = 0 (13)
E[ri,lqi,l] = 0 (14)

E[yi,lqi,l] = −ρ
(i,l)
q ryi,lyi,l

. (15)

Obviously, Eq. (15) follows from Eqs (11) and (14). For the uniform
quantizer case, Eq. (13) holds only if the probability density func-
tion of yi,l is even.
Under multipath propagation conditions and for large number of an-
tennas, the quantizer input signals yi,l are approximately Gaussian
distributed and thus, they undergo nearly the same distortion factor
ρq , i.e., ρ

(i,l)
q = ρq ∀i∀l. Furthermore, the optimal parameters of

the uniform as well as the non-uniform quantizer and the resulting
distortion factor ρq for Gaussian distributed signal are tabulated in
[8] for different bit resolutions b. Recent research work on optimally
quantizing the Gaussian source can be found in [10, 11].

Now, let qi = qi,R + jqi,I be the complex quantization error.
Under the assumption of uncorrelated real and imaginary part of yi,
we easily obtain:

rqiqi = E[qiq
∗
i ] = ρqryiyi , and ryiqi = E[yiq

∗
i ] = −ρqryiyi . (16)

For the uniform quantizer case, it was shown in [11], that the optimal
quantization step Δ for a Gaussian source decreases as

√
b2−b and

that ρq is asymptotically well approximated by Δ2

12
and decreases

as b2−2b. On the other hand, the optimal non-uniform quantizer
achieves, under high-resolution assumption, approximately the fol-
lowing distortion [12]

ρq ≈ π
√

3

2
2−2b

. (17)

This particular choice of the (non-)uniform scalar quantizer mini-
mizing the distortion between r and y, combined with the receiver
of the next section, is also optimal with respect to the total MSE
between the transmitted symbol vector x and the estimated symbol
vector x̂, as we will see later.

5. NEAR OPTIMAL DFE RECEIVER FOR THE
QUANTIZED SYSTEM

In this section, we optimize the receive filter G and the feedback ma-
trix F based on the MMSE criterion, taking into account the quanti-
zation process. To this end, we evaluate the MSE between each sent
symbol xπk

and detected one x̂πk
(1 ≤ k ≤ M)

MSEπk
= επk

= E[‖xπk
− (gT

kr −
k−1X
j=1

fk,jxπj )‖22]. (18)

Under the assumptions of uncorrelated symbols (Rxx = σ2
xIM ), Eq.

(18) becomes

επk
=σ

2
x − 2Re(gT

k rr,xπk
) + g

T
k Rrrg

∗
k

− 2Re(

k−1X
j=1

g
T
k rr,xπk

f
∗
k,j) + σ

2
x

k−1X
j=1

|fk,j |2,
(19)

where rr,xπk
= E[rx∗πk

] is the conjugate transpose of the πk-th
row of the correlation matrix

Rxr = E[xr
H] = E[x(y + q)H] = Rxy + Rxq, (20)

and Rrr the covariance matrix of the quantized signal given by

Rrr = E[(y + q)(y + q)H] = Ryy + Ryq + R
H
yq + Rqq. (21)

2894



5.1. Derivation of the DFEQ Receiver

Before investigating the MMSE optimization, we first derive all needed
covariance matrices by using the fact that the quantization error qi,
conditioned on yi, is statistically independent from all other random
variables of the system.
First we calculate ryiqj = E[yiq

∗
j ] for i 	= j:

E[yiq
∗
j ] = Eyj

ˆ
E[yiq

∗
j |yj ]

˜
= Eyj

ˆ
E[yi|yj ]E[q∗j |yj ]

˜
≈ Eyj

h
ryiyj r

−1
yjyj

yjE[q∗j |yj ]
i

(22)

= ryiyj r
−1
yjyj

E[yjq
∗
j ]

= −ρqryiyj . (23)

In (22), we approximate the Bayesian estimator E[yi|yj ] with the
linear estimator ryiyj r−1

yjyj
yj , which holds with equality if the vec-

tor y is jointly Gaussian distributed. Eq. (23) follows from (16).
Summarizing the results of (16) and (23), we obtain:

Ryq ≈ −ρqRyy. (24)

Similarly, we evaluate rqiqj for i 	= j to end up in:

E[qiq
∗
j ] = Eyj

ˆ
E[qiq

∗
j |yj ]

˜ ≈ ρ
2
qr
∗
yjyi

= ρ
2
qryiyj , (25)

where we used Eqs (24) and (16). From (25) and (16) we deduce the
covariance matrix of the quantization error:

Rqq ≈ ρqdiag(Ryy) + ρ
2
qnondiag(Ryy)

= ρqRyy − (1− ρq)ρqnondiag(Ryy),
(26)

with diag(A) denotes a diagonal matrix containing only the diago-
nal elements of A and nondiag(A) = A − diag(A). Inserting the
expressions (24) and (26) into Eq. (21), we obtain:

Rrr ≈ (1− ρq)(Ryy − ρqnondiag(Ryy)). (27)

In a very similar way, we get the covariance matrix Rxq = E[xqH]
as

E[xq
H] ≈ −ρqRxy. (28)

Thus, Equation (20) becomes

Rxr ≈ (1− ρq)Rxy. (29)

Finally, Ryy and Rxy can be easily obtained from our system model:

Ryy = Rηη + σ
2
xHH

H
, (30)

Rxy = σ
2
xH

H
. (31)

Now, we return to our MMSE-DFE problem. When differenti-
ating each MSE expression from (19) with respect to f∗k,j , we obtain

∂επk

∂f∗k,j

= σ
2
xfk,j − g

T
k rr,xπj

, (32)

which should be equal to zero in order to optimize the MSE. Thus
we obtain using (29) and (31) the optimal feedback matrix

fk,j = (1− ρq)g
T
k hπj , ∀k ∈ {1, . . . , M} and j < k. (33)

This delivers the following individual MSE

επk
= σ

2
x−2Re(gT

k rr,xπk
) + g

T
k Rrrg

∗
k

− σ
2
x(1− ρq)

2
g

T
k (

k−1X
j=1

hπj h
H
πj

)g∗k.
(34)

Differentiating this MSE expression with respect to gH
k , we obtain

∂επk

∂gH
k

= −r
H
r,xπk

+g
T
k Rrr−σ

2
x(1−ρq)

2
g

T
k (

k−1X
j=1

hπj h
H
πj

), (35)

Setting this to zero, we get with (29) and (31)

g
T
k = σ

2
xh

H
πk

»
1

1− ρq
Rrr − σ

2
x(1− ρq)Hπk−1

–−1

| {z }
T k

, (36)

where Hπk−1
=
Pk−1

j=1 hπj hH
πj

, and with (27), we obtain

T k =
ˆ
Ryy − ρqnondiag(Ryy)− (1− ρq)Hπk−1

˜−1
. (37)

Thus, using (33) the optimal feedback matrix reads as

[F ]k,j = σ
2
x(1− ρq)h

H
πk

T khπj , ∀k ∈ {1, . . . , M} and j < k.
(38)

Notice that, when we set ρq = 0 in the expressions of GDFEQ and
F DFEQ, we obtain exactly the same expressions as in (7) for the
unquantized system with MMSE-DFE detection.
Using Eqs (19), (33) and (36), the MSE resulting from the optimal
design of the receiver filter and feedback matrix becomes after some
computations

MSEDFEQ
πk

= σ
2
x − σ

4
x(1− ρq)h

H
πk

T khπk
. (39)

Finally, in order to find the optimum processing order π, we use the
same approach as in V-BLAST described by (10), but we evaluate
the individual MSEs according to (39), so that we take into account
the quantization process.

5.2. Effects of Quantization on the MSE

In order to verify whether the chosen quantizer minimizes the MSE
of our system, we examine the first derivative of each MSEDFEQ

k in
(39) with respect to ρq:

∂MSEDFEQ
πk

∂ρq
= h

H
πk

T kdiag(Ryy)T khπk
= g

T
k diag(Ryy)g∗k,

where we used (39) and (37). Obviously, the derivative of the MSE
with respect to the distortion is positive. Therefore, each MSEDFEQ

k

is monotonically increasing with respect to ρq . Since we chose the
quantizer to minimize the distortion factor ρq , our receiver quantizer
designs are jointly optimum with respect to the total MSE.

Now, we expand the MSE expression (39) into a Taylor series
around ρq = 0 up to the order one, to get an approximation of each
individual MSE

MSEDFEQ
πk

≈ MSEDFE
πk

+

ρqh
H
πk

(
Ryy

σ2
x

−Hπk−1
)−1diag(Ryy)(

Ryy

σ2
x

−Hπk−1
)−1

hπk
,

(40)
where MSEDFE

πk
= MSEDFEQ

πk
|ρq=0 is the achievable MSE without

quantization from (9). The second term gives the increase in each
MSEπk

due to the quantization as a function of ρq and the channel
parameters. It reveals also the residual error at infinite SNR.

6. SIMULATION RESULTS

The performance of the modified DFE filter for a 4- and 5-bit quan-
tized output MIMO system (DFEQ), in terms of BER averaged over
106 channel realizations, is shown in Fig. 2 for a 10×10 MIMO sys-
tem (QPSK), compared with the conventional DFE receiver (DFE)
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and our modified DFE detector (DFEQ). The symbols and the noise
are assumed to be uncorrelated, that is Rxx = σ2

xI and Rηη = σ2
ηI.

Hereby, the (pseudo-)SNR (in dB) is defined as

SNR = 10log10(
σ2

x

σ2
η

). (41)

Furthermore, the entries of H are complex-valued realization of in-
dependent zero-mean Gaussian random variables with unit variance.
Clearly, the modified DFE filter outperforms the conventional DFE
filter at high SNR. This is because the effect of quantization error is
more pronounced at higher SNR values when compared to the ad-
ditive Gaussian noise variance. Since the conventional MMSE-DFE
filter looses its regularized structure at high SNR values, its perfor-
mance degrades asymptotically, when operating on quantized data.
For comparison, we also plotted the BER curve for the DFE receiver,
if no quantization is applied.
In Fig. 3, we consider a 4-bit quantized 4×4 MIMO configuration.
In addition to the BER curves of our DFEQ detector and a conven-
tional DFE, it shows the simulated BER with the conventional de-
cision feedback equalization, but considering the quantization error
q as an additive white noise, which is uncorrelated with the other
signals of the system. For the additive quantization noise model, we
take as effective noise covariance matrix (see first equality of (16)):

R̄ηη = Rηη + R̄qq = Rηη + diag(Ryy). (42)

Obviously, this model, which has been commonly used in the liter-
ature is also outperformed by the presented DFEQ at any SNR level
and independently of the resolution.
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Fig. 2. DFEQ vs. the conventional DFE, QPSK modulation with
M = 10, N = 10, 4- and 5-bit uniform quantizer, with ρq =
0.011535 and ρq = 0.00349, respectively.

7. CONCLUSION

We addressed the problem of designing a MMSE-DFE receiver for
MIMO channels with quantized outputs. We provided an approxi-
mation for the mean squared error for each data stream, where the
quantizer is optimized for a Gaussian input. Then, we proposed an
optimized DFE receiver operating on quantized data combined with
ordering, which shows better performance in terms of BER than the
conventional DFE filter. An essential aspect of our derivation is that
we do not make the assumption of uncorrelated white quantization
error. Moreover, our receiver does not present any extra complexity
from the implementation point of view.
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Fig. 3. DFEQ vs. the conventional DFE and DFE with additive
quantization noise model, 16QAM modulation with M = 4, N = 4,
4-bit (ρq = 0.011535) uniform quantizer.
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