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ABSTRACT

This paper considers the problem of Bayesian estimation of a Gaus-
sian vector in a linear model with random Gaussian uncertainty in
the mixing matrix. The maximum a-posteriori estimator is derived
for this model using the Bayesian Expectation-Maximization. It is
demonstrated that the solution forms an elegant and simple iteration
which can be easily implemented. Finally, the estimator developed is
considered in the context of near-Gaussian-digitally modulated sig-
nals under channel uncertainty, where it is shown that the MAP es-
timator outperforms the standard linear MMSE estimator in terms of
mean square error (MSE) and bit error rate (BER).

Index Terms— MAP estimation, Bayesian EM

1. INTRODUCTION

A generic problem in many different fields is the estimation of a ran-
dom Gaussian vector x in the linear model

y = Gx + w, (1)

whereG is a linear transformation matrix and w is a Gaussian noise
vector. Three standard methods for estimating x in this Bayesian
framework are the minimum mean square error (MMSE), the lin-
ear minimum mean squared error (LMMSE) and the maximum a-
posteriori (MAP) estimators. The first two approaches are based on a
quadratic cost function whereas the third minimizes a hit-or-miss risk
function. From a detection point of view, the MAP method is also
related to the minimum error probability criterion.

Most of the literature concentrates on the simplest case, in which
it is assumed that the model matrix G is completely deterministic
and specified a-priori. In this setting, the MMSE, LMMSE and MAP
estimators coincide and have a simple closed form solution. The
novelty of this paper lies in the specification of the transformation
matrix, where we remove the assumption, made in much of the lit-
erature that G is known deterministically. Instead we treat G as a
random matrix and assume weak statistical properties of this matrix,
namely that its elements are i.i.d Gaussian distributed with known
second order statistics. A typical scenario in which G is random is
estimation under uncertainty conditions. For example, in commu-
nication systems this setting is appropriate when only partial chan-
nel state information is available. In this case, the MMSE, LMMSE
and MAP approaches lead to different estimators. In fact, we will
show that the solution of the MMSE leads to an intractable integra-
tion, whereas the MAP estimator can be efficiently found. A pos-
sible application is digital communication systems employing near-
Gaussian constellation sets. It is well known that in order to achieve
capacity in linear Gaussian channels, powerful coding schemes must
be combined with shaping methods which result in near-Gaussian

symbols [1, 2]. Two practical schemes that obtain shaping gain are
“trellis shaping” [3] and “shell mapping” [4]. Another example is
the interleave-division-multiplexing space-time (IDM-ST) scheme, in
which multiple independent data streams are encoded with forward
error correction (FEC), interleaved and multiplexed simultaneously
into different antennas. The superposition of multiple independent
symbols generates a Gaussian distributed signal that is capacity achiev-
ing [5].

In [6], this problem was tackled and the MAP solution was de-
rived by transformation of the problem from a multi dimensional into
one dimensional optimization program. In this process the objective
function becomes convex and this can be exploited in the solution
technique. The drawback of this proposed method lies in the fact that
to perform this technique, one must determine the eigen values of a
potentially high rank matrix, this can lead to computational issues re-
lated to scaling the complexity of the system under consideration due
to the curse of dimensionality. The proposed technique in this pa-
per bypasses these issues and so scales more effectively with system
complexity. Using the BEM procedure, we derive the solution which
forms an iterative procedure that can be easily implemented.

The following notation is used. Boldface upper case letters de-
note matrices, boldface lower case letters denote column vectors, and
standard lower case letters denote scalars. The superscripts (·)T de-
notes the transpose. By I we denote the identity matrix and ‖·‖ is
the standard Euclidean norm. The operations⊗ and vec(.) denote the
Kronecker matrix multiplication and the vector obtained by stack-
ing the columns of a matrix one over the other. The functions p(x),
p(x|y) and E{·} denote the probability distribution function (PDF)
of x, the PDF of x given y, and the expectation, respectively.

2. PROBLEM FORMULATION

Consider the problem of estimating a random vector x in the linear
model

y = Gx + w, (2)

where G is an N × K Gaussian matrix with known mean H and
variance σ2

g > 0, x is a zero-mean Gaussian vector with independent
elements of variance σ2

x > 0 and w is a zero-mean Gaussian vector
with independent elements of variance σ2

w > 0. In addition, x, G
and w are statistically independent. It is desired to find an estimator
x̂ (y) which is a function of the observation vector y and the given
statistics ofG, that is optimal in some sense to be defined next. Under
the Bayesian framework, a typical procedure for selecting x̂ (y) is
to define a nonnegative cost function C (x, x̂ (y)) and to minimize
its expected value [7]. The most common objective function is the
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quadratic error which is defined as (See Fig. 1)

C (x, x̂ (y)) = ‖x − x̂ (y)‖2 . (3)

Minimizing this objective function leads to the well known MMSE
estimator [7]

x̂MMSE (y) = E {x|y}

= E {E {x|y,G}|y}

= E

{(
G

T
G +

σ2
w

σ2
x

I

)−1

G
T
y

∣∣∣∣∣ y
}

.

(4)

Unfortunately, it is easy to see that the computational complexity in-
volved in solving (4) is too high for practical applications. Instead, a
common approach is to consider the LMMSE estimator which satis-
fies the following closed form solution [7]:

x̂LMMSE (y) = E
{
xy

T
}

E−1
{
yy

T
}

y

= H
T

(
HH

T + Kσ2
gI +

σ2
w

σ2
x

I
)−1

y,
(5)

where we have used the fact that x and y are zero mean random vec-
tors.

Alternatively, one may choose to minimize the hit-or-miss cost
function given by (See Fig. 1)

C (x, x̂ (y)) =

{
0, ‖x − x̂ (y)‖ ≤ ε

1, otherwise
, (6)

where ε → 0 is a positive scalar. Optimizing this cost function yields
the MAP estimator:

x̂MAP (y) = arg max
x

{
log px|y (x|y)

}
= arg max

x

{
log py|x (y|x) + log px (x)

}
.

(7)

As a result of the Gaussian assumption,we have that

py|x (y|x) ∼ N
(
Hx,

(
σ2

g ‖x‖
2 + σ2

w

)
I
)
,

px (x) ∼ N
(
0, σ2

xI
)
,

(8)

and x̂MAP (y) is the solution to

min
x

{
‖y − Hx‖2

σ2
g ‖x‖

2 + σ2
w

+ N log(σ2
g ‖x‖

2 + σ2
w) +

‖x‖2

σ2
x

}
. (9)

Problem (9) is a K-dimensional, nonlinear and nonconvex optimiza-
tion program. In the rest of the paper we will discuss the solution of
(9) using BEM method.

3. REVIEW OF BAYESIAN EM METHODS

In this section we provide a short overview of BEM methods. The
Bayesian expectation-maximization algorithm is one of several gen-
eral techniques for finding the MAP estimates where the model de-
pends on unobserved latent variables.

We have focused on this technique since it utilizes the classical
EM algorithm [8], which exploits the property that the EM algorithm
is known to converge to a stationary point corresponding to a local op-
timum of the posterior distribution, though convergence to the global
model is not guaranteed.

The BEM algorithm consists of two major steps: an expectation
step, followed by a maximization step. The expectation is with re-
spect to the unknown underlying variables, conditioned on the current
estimate of the parameters and the observations. During the maxi-
mization step one maximizes the complete data likelihood condition-
ing on the expectation estimates of the previous step. The algorithm
is numerically stable and convergence is typically fast, though one
should be careful with likelihood functions which are multi-modal.
In such cases ad hoc methods such as multiple starting points have
been proposed to try to obtain global maxima in this framework. The
BEM is implemented in the following steps:

Q (x,xn) = E {log p (y,G,x) |y;xn} , (10)
xn+1 = arg max

x
{Q (x,xn)} . (11)

Eq. (10- 11) are repeated until a stopping criterion is attained.

4. MAP ESTIMATION USING BEM

In this section we demonstrate the application of the BEM method-
ology in solving the MAP estimation problem in context of model
(2). At each iteration, the algorithm maximizes the expected log like-
lihood (The expectation is taken with respect to G to integrate this
parameter out of the target posterior. This allows the maximization
step to obtain an updated estimate of the MAP of x for the target
posterior p(x |y))

xn+1 = arg max
x

EG|y;xn
{log p (y,G,x)}

= arg max
x

EG|y;xn
{log p (y|G,x) + log p (G|x)

+ log p (x)} .

(12)

Since x andG are statistically independent, log p (G|x) = log p (G)
and is constant w.r.t. x. Therefore (12) simplifies to:

xn+1 = arg min
x

EG|y;xn

{
1

σ2
w

‖y − Gx‖2 +
1

σ2
x

‖x‖2

}
= arg min

x
EG|y;xn

{
1

σ2
w

(
−2yT

Gx + x
T
G

T
Gx

)
+

1

σ2
x

‖x‖2

}
= arg min

x

{
1

σ2
w

(
−2yT EG|y;xn

{G}x
)

+
1

σ2
w

x
T EG|y;xn

{
G

T
G

}
x +

1

σ2
x

x
T
x

}
= arg min

x

{
1

σ2
w

(
−2yT Φ1 (y,xn)x + x

T Φ2 (y,xn)x
)

+
1

σ2
x

x
T
x

}
,

(13)

where

Φ1 (y,xn) = EG|y;xn
{G} ,

Φ2 (y,xn) = EG|y;xn

{
G

T
G

}
.

(14)

Next, we take the derivative with respect to x and equate to 0 to obtain
the following iterative procedure:

xn+1 =

(
Φ2 (y,xn) +

σ2
w

σ2
x

I

)−1

Φ1 (y,xn)T
y. (15)
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The expectations in (14) can be evaluated based on the jointly
Gaussian optimal MMSE estimation theory [7]. First, using the Kro-
necker product we rewrite (2) as

y =
(
x

T ⊗ I
)
g + w, (16)

where g = vec(G). The Bayesian MMSE estimate of (16) can be
expressed as

Eg|y;xn
{g} = vec (H) +

(
xT ⊗ I

)
(y − Hxn)

‖xn‖
2 +

σ2
w

σ2
g

, (17)

and

COVg|y;xn
{g} = σ2

gI −
σ4

g

(
xnxT

n ⊗ I
)

σ2
g ‖xn‖

2 + σ2
w

. (18)

Next, after trivial algebraic manipulations, we can find Φ1 and Φ2:

Φ1 (y,xn) = H +
1

‖xn‖
2 +

σ2
w

σ2
g

(y − Hxn)xT
n , (19)

Φ2 (y,xn) = Φ1 (y,xn)T Φ1 (y,xn)

+

⎛⎝I −
σ2

gxnxT
n

‖xn‖
2 +

σ2
w

σ2
g

⎞⎠ σ2
gN.

(20)

4.1. Initial guess of x0

In practice, selection of the initial guess will influence the ability of
the algorithm to obtain an optimal solution. Typically the influence is
seen trough the following aspects: number of iterations to achieve a
solution with a desired tolerance, the ability to find a global solution
as opposed to a local solution and computational effort. As discussed
previously, the problem addressed in this paper is non-convex, hence
convergence to the optimal solution is not guaranteed. There are sev-
eral ad-hoc procedures for attempting to deal with these issues, which
include multiple random starting points, coupled with a criterion that
chooses the solution which is obtained most frequently from these
starting points. Another alternative includes tempering of the objec-
tive function being maximized, in this case the posterior distribution.
However, these techniques are not guaranteed to be optimal. As a
simple computationally efficient alternative, we propose to choose the
initial guess as:

x0 = x̂LMMSE . (21)

In summary, a BEM algorithm is composed of (21) and iterating (15)
with (19) and (20) until convergence. In practice, the solution of the
set of simultaneous equations in (15) does not require matrix inver-
sion and may be solved efficiently as a solution of a set of linear
equations, which makes this approach practically viable.

5. BAYESIAN DETECTION OF NEAR-GAUSSIAN DIGITAL
CONSTELLATIONS

We now discuss the application of theMAP estimator of near-Gaussian
digital constellations. First, we discuss Gaussian-like constellations
and then provide a detector for those constellations.

5.1. Nonuniform Constellations

The goal of nonuniform constellations is to create a discrete Gaussian-
like distribution of the signals constellation, thus achieving the well
known shaping gain [1, 2]. The idea behind constellation shaping is
that symbols with small norm (energy) will be used more frequently
than symbols with high norm. This achieves an overall reduction in
transmitted energy. Theoretically, the signal points should be cho-
sen from a continuous Gaussian distribution. In practice, since the
constellations are finite, an optimal gain can not be achieved. The
Maxwell-Boltzman (M-B) distribution is a good approximation of the
optimal solution for the maximum of the mutual information [9] and
the symbols’ probabilities P (sj) , j = 1, ..., |D| are attained by

P (sj) = K (λ) exp
{
−λ |sj |

2
}

, λ ≥ 0, (22)

where

K (λ) =

⎛⎝∑
sj

exp
{
−λ |sj |

2
}⎞⎠−1

, (23)

is the distribution normalization factor, and λ controls the tradeoff
between the average power and the entropy rate H(S).

5.2. Construction of 8-PAM constellation

We apply the M-B distribution, according to (22) to an 8-ary PAM
constellation, using λ = 1/20.⎧⎪⎪⎪⎨⎪⎪⎪⎩

P (s = ±1) = 0.2425

P (s = ±3) = 0.1625

P (s = ±5) = 0.0730

P (s = ±7) = 0.0220

(24)

5.3. Detection Scheme

The jointly optimal detector is given by [7]

x̂MAP (y) = arg max
x∈DK

px|y (x|y) , (25)

where D is the modulation alphabet. The complexity of the MAP
detector is exponential in K, due to the discrete nature of the sup-
port which has |D|K elements and is usually unrealizable. Instead,
we suggest a low complexity suboptimal detector based on the MAP
estimator presented in Section 4. The jointly optimal detector given
by (25) can be written as (9), but this time, the support of x is |D|K .
Thus, it is the solution to

min
x∈DK

{
‖y − Hx‖2

σ2
g ‖x‖

2 + σ2
w

+ N log(σ2
g ‖x‖

2 + σ2
w) +

‖x‖2

σ2
x

}
. (26)

However, as the support of D increases, hence, the quantization error
decreases, the solution of (26) converges to the solution of (9).

Therefore, an appealing near-optimal approach for approximat-
ing the MAP detector is quantizing the MAP solution for the contin-
uous Gaussian distribution to the nearest lattice point, that is:

x̂D−MAP (y) = quantize (x̂MAP (y)) , (27)

where x̂MAP (y) is attained by (15). In the limit of infinite number of
bins, x̂D−MAP is effectively equal to x̂MAP , and is optimal. In that
case, the detection problem, generally considered to be exponentially
complex, can be solved in linear complexity, given in Section 4. For
comparison purposes, the LMMSE detector is:

x̂D−LMMSE (y) = quantize (x̂LMMSE (y)) , (28)

where x̂LMMSE (y) is given by (5).
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6. SIMULATION RESULTS

In this section numerical results illustrating the behavior of our new
estimator in a MIMO system under a range of variance values for the
random matrix G are provided. For this simulation the parameters
areN = 40,K = 4. The matrixH was chosen as a concatenation of
ten 4 × 4 matrices with unit diagonal elements and 0.5 off-diagonal
elements. We ran 5000 computer simulation for every σ2

w. The sym-
bols vector x follows eq. (24) and is shown in Fig. 2. Each symbol
maps 3 bits using gray labeling, thus, neighboring symbols differ by
only one bit. The simulation results for the BER and the MSE of the
MAP and LMMSE estimators are presented in Figs. 3 and 4, respec-
tively, for different values of σ2

g = {0, 0.02, 0.04}. As expected, in
the special case where σ2

g = 0, the MAP and LMMSE estimators
are identical. On the other hand, when σ2

g = {0.02, 0.04}, the MAP
estimator yields better performances in terms of both MSE and BER.
The appearance of the error floor in both Figs 3 and 4 is due to the
uncertainty in the mixing matrixG and can not be mitigated, even in
high SNR values.
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Fig. 1. Quadratic cost function (left), hit-or-miss cost function (right)
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Fig. 2. Near-Gaussian constellation of 8 symbols.

7. CONCLUSIONS

In this work, we introduced the MAP estimator of a random Gaus-
sian vector x in a linear model with random transformation matrix
G. We derived the MAP estimator using BEM and provided an ef-
ficient method for finding it. Next, we proposed a detection scheme
for near-Gaussian-digitally modulated symbols with linear complex-
ity. Simulation results show the improved performance offered by
our new approach in comparison to the standard LMMSE method in
terms of both MSE and BER.
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