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ABSTRACT

We consider the estimation of doubly selective wireless channels
within pulse-shaping multicarrier systems (which include OFDM
systems as a special case). A new channel estimation technique us-
ing the recent methodology of compressed sensing (CS) is proposed.
CS-based channel estimation exploits a channel’s delay-Doppler
sparsity to reduce the number of pilots and, hence, increase spectral
efficiency. Simulation results demonstrate a significant reduction of
the number of pilots relative to least-squares channel estimation.

Index Terms— OFDM, multicarrier modulation, channel estima-
tion, compressed sensing, sparse reconstruction, basis pursuit

1. INTRODUCTION

The recently introduced principle and methodology of compressed
sensing (CS) allows the efficient reconstruction of sparse signals
from a very limited number of measurements (samples) [1, 2]. CS
has gained a fast-growing interest in applied mathematics. In this
paper, we apply CS to pilot-based channel estimation in highly mo-
bile environments. We consider pulse-shaping multicarrier (MC)
systems, which include orthogonal frequency-division multiplexing
(OFDM) as a special case [3]. Conventional methods for channel
estimation (e.g., [4]) are not able to exploit the inherent sparsity of
the transmission channel that is due to the sparse distribution of scat-
terers in space. As we will demonstrate, CS provides a constructive
way for exploiting this sparsity in order to reduce the number of pi-
lots and, hence, increase spectral efficiency.

This paper is organized as follows. In Section 2, some basic facts
about CS are reviewed. The MC system model is described in Sec-
tion 3. Section 4 studies the delay-Doppler sparsity of doubly selec-
tive channels. In Section 5, we present the CS-based channel esti-
mation method. Finally, simulation results in Section 6 demonstrate
performance gains relative to least-squares channel estimation.

2. REVIEW OF COMPRESSED SENSING

In a typical sparse reconstruction scenario, one tries to estimate a
parameter vector u ∈ R

M based on the linear model

v = Φu + w , (1)

where v ∈ R
N is an observation vector, Φ ∈ R

N×M is a measure-
ment matrix, and w ∈ R

N is a noise vector. The reconstruction is
subject to the constraint that u is S-sparse, i.e., at most S of its en-
tries are nonzero. The positions of the nonzero entries are unknown.
Typically, the number of parameters is much larger than the number
of observations, i.e., M�N .

A key ingredient of CS is the uniform uncertainty principle [5],
which essentially states that the measurement matrix Φ obeys a “re-
stricted isometry hypothesis.” Let ΦT , T ⊂ {1, . . . , M} be the
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N × |T | submatrix comprising those columns of Φ that are indexed
by the elements of T . Then the S-restricted isometry constant δS of
Φ is defined as the smallest quantity δS such that

(1−δS)‖a‖22 ≤ ‖ΦT a‖22 ≤ (1+ δS)‖a‖22
for all subsets T with |T | ≤ S and all vectors a∈ R

|T |.
We will use the estimator of u defined by the convex program

û � arg min
u∈Uε

‖u‖1 , (2)

where Uε is the set of all u∈R
M satisfying ‖Φu− v‖2 ≤ ε for a

given ε > 0 [5]. This estimator—an extension of basis pursuit —is
able to recover S-sparse parameter vectors according to the follow-
ing result [5].

For a given S, assume that the 3S- and 4S-restricted isometry con-
stants of Φ satisfy

δ3S + 3δ4S < 2 . (3)

Let v = Φu + w with ‖w‖2 ≤ ε, and let uS ∈ R
M contain the S

components of u with largest absolute values, the remaining M−S
components being zero. Then the estimate û in (2) satisfies

‖û−u‖2 ≤ C1ε + C2
‖u−uS‖1√

S
, (4)

where the constants C1 and C2 depend only on δ3S and δ4S .

For a zero-mean i.i.d. Gaussian noise vector, the condition‖w‖2≤
ε is satisfied with high probability for an appropriate ε. In the noise-
less case (ε=0), (4) shows that û = u for any S-sparse vector u.

Conditions under which the matrix Φ satisfies (3) are obviously of
interest. It has been shown [6] that if a complex-valued measurement

matrix Φc∈C
N′×M′

is constructed by selecting uniformly at random
[1] N ′ rows from a unitary M ′×M ′ matrix U and normalizing the
columns (so that they have unit Euclidean norms), a sufficient con-
dition for (3) to be true with overwhelming probability1 is

N ′ ≥ C3 (ln M ′)4μ2S . (5)

Here, μ �
√

M ′ maxi,j |Ui,j | (known as the coherence of U) and
C3 is a constant. Later, we shall use the fact that under condition
(5), the real-valued measurement matrix Φ∈R

N×M (with N =2N ′,
M =2M ′) that is obtained from Φc according to

Φ �

» 	{Φc} −
{Φc}

{Φc} 	{Φc}

–
(6)

also satisfies (3) with overwhelming probability. This follows from
the special structure of Φ (see, e.g., [7, Lemma 1]) and the fact that
if a real-valued vector u = [u1 · · · u2M′ ]T is S-sparse, then so is the

complex-valued vector uc � [u1 · · · uM′ ]T + j[uM′+1 · · · u2M′ ]T.

1“Overwhelming probability” means that the probability of (3) not being
true decreases exponentially with an increasing number of selected rows, N ′.
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3. MULTICARRIER SYSTEM MODEL

3.1. Modulator, Channel, Demodulator

We consider a pulse-shaping MC system for the sake of generality
and because of its advantages over conventional cyclic-prefix (CP)
OFDM [3, 8]; however, CP-OFDM is included as a special case. The
complex baseband domain is considered throughout. Let K, N≥K,
and L denote the number of subcarriers, the symbol duration, and
the number of transmitted symbol periods, respectively. The MC
modulator generates the discrete-time transmit signal

s[n] =
L−1X
l=0

K−1X
k=0

al,k gl,k[n] , (7)

where al,k with l = 0, . . . , L−1 and k = 0, . . . , K−1 denotes

the data symbols and gl,k[n] � g[n− lN ]ej2π k
K

(n−lN) is a time-
frequency shifted version of a transmit pulse g[n]. Subsequently,
s[n] is converted into the continuous-time transmit signal s(t) =P∞

n=−∞ s[n]f(t−nTs), where f(t) is an interpolation filter and Ts

is the sampling period. For simplicity, we assume an ideal filter, i.e.,

f(t) =
p

1/Ts sinc(πt/Ts) with sinc(x) � sin x
x

.

The channel is assumed doubly selective/dispersive with time-
varying impulse response h(t, τ ). The channel output is

r(t) =

Z ∞

−∞
h(t, τ )s(t−τ )dτ + z(t) ,

where z(t) is zero-mean, stationary, white, rotationally invariant,
complex Gaussian noise with power spectral density N0.

At the receiver, the channel output r(t) is converted into the dis-
crete-time signal r[n] =

R ∞
−∞ r(t)f(t−nTs)dt, where f(t) now

serves as an anti-aliasing filter. Subsequently, the MC demodulator
computes the inner products of r[n] with time-frequency shifted ver-

sions γl,k[n] � γ[n− lN ]ej2π k
K

(n−lN) of a receive pulse γ[n], i.e.,

xl,k = 〈r, γl,k〉 =
∞X

n=−∞
r[n]γ∗

l,k[n] , (8)

for l = 0, . . . , L−1 and k = 0, . . . , K−1. The xl,k are finally
equalized and quantized according to the data symbol alphabet.

In practice, CP-OFDM is typically used [9, 10]. This is a special
case of our pulse-shaping MC setting; it is obtained for a rectangular
transmit pulse g[n] that is 1 on [0, N −1] and 0 otherwise, and a
rectangular receive pulse γ[n] that is 1 on [N −K, N − 1] and 0
otherwise (N−K ≥ 0 is the CP length).

By combining some of the equations presented earlier, a relation
between the discrete-time signals s[n] and r[n] is obtained as

r[n] =

∞X
m=−∞

h[n, m]s[n−m] + z[n] , (9)

with the discrete-time time-varying impulse response

h[n, m] =

Z ∞

−∞
h(nTs, τ ) sinc

“
π

“
m− τ

Ts

””
dτ . (10)

The discrete-time noise z[n] is zero-mean, stationary, white, rota-

tionally invariant, complex Gaussian with variance σ2
z = N0.

3.2. System Channel

Next, we consider the system channel subsuming the MC modula-
tor, the physical channel, and the MC demodulator. Combining (8),
(9), and (7) and neglecting intersymbol and intercarrier interference
(which is justified even in highly mobile environments if g[n] and
γ[n] are properly designed), we obtain

xl,k = Hl,k al,k + zl,k , (11)

for l = 0, . . . , L−1 and k = 0, . . . , K−1. Here, zl,k = 〈z, γl,k〉,
and the system channel coefficients Hl,k can easily be expressed in
terms of g[n], h[n, m], and γ[n] [3].

We will need a “delay-Doppler-domain expression” of the channel
coefficients Hl,k. Let us assume that the receive pulse γ[n] is zero
outside [0, Lγ ]. To compute xl,k in (8) for l = 0, . . . , L−1, r[n]

must then be known for n = 0, . . . , Nr−1, where Nr � (L−1)N +
Lγ + 1. In this interval, we can express r[n] as

r[n] =
∞X

m=−∞

Nr−1X
i=0

Sh[m, i]s[n−m]e
j2π in

Nr + z[n] , (12)

with the discrete-delay-Doppler spreading function [11]

Sh[m, i] �
1

Nr

Nr−1X
n=0

h[n, m]e
−j2π in

Nr . (13)

Combining (8), (12), and (7), we reobtain the system channel rela-
tion (11) with Hl,k expressed as

Hl,k =
∞X

m=−∞

Nr−1X
i=0

F [m, i] e−j2π( km
K

− Nli
Nr

), (14)

where

F [m, i] � Sh[m, i] A∗
γ,g

“
m,

i

Nr

”
(15)

with the cross-ambiguity function [12] Aγ,g(m, ξ) �
P∞

n=−∞γ[n]

g∗[n−m]e−j2πξn. Using the approximation Nr ≈ LN (which is
exact for CP-OFDM), we can write (14) as the two-dimensional dis-
crete Fourier transform

Hl,k =
K−1X
m=0

L−1X
i=0

F̃ [m, i] e−j2π( km
K

− li
L

) , (16)

with the “pre-aliased” version of F [m, i]

F̃ [m, i] �

N−1X
q=0

F [m, i + qL] , i = 0, . . . , L−1 . (17)

4. DELAY-DOPPLER SPARSITY

We assume that the channel comprises P propagation paths corre-
sponding to P specular (point) scatterers with fixed delays τp and
Doppler frequency shifts νp for p = 1, . . . , P . This simple structure
is often a good approximation to real mobile radio channels. The
channel impulse response then has the form

h(t, τ ) =
PX

p=1

ηp δ(τ−τp) ej2πνpt,

where ηp characterizes the attenuation and initial phase of path p.
The discrete-time impulse response (10) becomes

h[n, m] =

PX
p=1

ηp ej2πνpnTs sinc
“
π

“
m− τp

Ts

””
. (18)

Furthermore, inserting (18) into (13) and applying the geometric
sum formula, the delay-Doppler spreading function is obtained as

Sh[m, i] =
PX

p=1

ηp e
jπ(νpTs− i

Nr
)(Nr−1)

Λp[m, i] , (19)

with

Λp[m, i] � sinc
“
π

“
m− τp

Ts

””
dirNr

`
π(i−νpTsNr)

´
, (20)

where dirN (x) � 1
N

ej x
N

(N−1)
PN−1

n=0 e−j2 x
N

n = sin(x)
N sin(x/N)

.
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In the following, we investigate the sparsity of Sh[m, i]. In view
of (19), we first consider the sparsity of Λp[m, i]. Using the appro-
priate versions of Parseval’s theorem, it can be readily shown thatP∞

m=−∞
PNr−1

i=0 Λ2
p[m, i] = 1, i.e., the total energy of Λp[m, i] is

1. Next, we calculate an upper bound on the percentage of the energy
of Λp[m, i] that is located outside a rectangular neighborhood of the
delay-Doppler point of the p th scatterer, (τp/Ts, νpTsNr). To this
end, we first consider the energy of those samples of sinc(π(m−
τp/Ts)) whose distance from τp/Ts is greater than Δm ∈ {2, 3, . . . }.
Let M denote the set of all integers m ∈ Z except those with
|m− τp/Ts| ≤ Δm. We have the bound

X
m∈M

˛̨
˛ sinc

“
π

“
m− τp

Ts

””˛̨
˛2 ≤ 2

∞X
i=Δm

1

(πm)2
≤ 2

π2

Z ∞

Δm−1

dx

x2

=
2

π2 (Δm−1)
, (21)

where sin2x ≤ 1 and some monotonicity arguments have been used.
In a similar manner, we consider the energy of those samples of
dirNr

`
π(i− νpTsNr)

´
whose distance (up to the modulo-Nr oper-

ation, see below) from νpTsNr is greater than Δi ∈ {2, . . . , Nr/2}
(Nr is assumed even). Let I denote the set {0, . . . , Nr−1} with
the exception of all i = iZ mod Nr , where iZ is any integer with
|iZ − νpTsNr| ≤ Δi. We have the bound

X
i∈I

˛̨
dirNr

`
π(i−νpTsNr)

´˛̨2 ≤ 2

N2
r

Nr/2X
i=Δi

1

sin2
`

π
Nr

i
´

≤ 2

N2
r

Z Nr/2

Δi−1

dx

sin2
`

π
Nr

x
´ =

2

Nrπ
cot

“ π

Nr
(Δi−1)

”

≤ 1

π(Δi−1)
, (22)

where we have used sin2x ≤ 1, some monotonicity arguments, and
cot x ≤ π

2x
within [0, π

2
]. Combining (20)–(22), we see that

X
(m,i)∈M×I

Λ2
p[m, i] ≤ 2

π3 (Δm−1)(Δi−1)
. (23)

Thus, at most a percentage of 2
π3 (Δm−1)(Δi−1)

·100 % of the energy

of Λp[m, i] is located outside a rectangular neighborhood of (τp/Ts,
νpTsNr) comprising (2Δm + 1)(2Δi + 1) samples. Since the do-
main of Λp[m, i] is Z × {0, . . . , Nr−1}, with Nr typically large,
we conclude that Λp[m, i] is an approximately sparse function.

Hereafter, therefore, we will consider Λp[m, i] as NΛ-sparse, with
an appropriately chosen number NΛ of nonzero samples. The energy
bound (23) allows us to choose NΛ such that a prescribed approx-
imation quality can be guaranteed. From (19), it then follows that
Sh[m, i] is PNΛ-sparse, and the same is true for F [m, i] in (15)

and, in turn, for F̃ [m, i] in (17).

5. CS-BASED CHANNEL ESTIMATION

To develop the new channel estimation method, we first show that
pilot-based channel estimation can be formulated as a sparse recon-
struction problem of the type discussed in Section 2.

For practical channels as well as transmit and receive pulses, the
function F [m, i] in (15) is effectively supported in a subdomain of
the delay-Doppler plane. This allows us to perform a subsampling
in the time-frequency domain. Thus, we assume that the support of

F̃ [m, i] is contained in [0, D−1]×
`
[0, I/2−1]∪ [L−I/2, L−1]

´
,

where D ≤ K, I is even, and D and I are chosen such that ΔK �

K/D and ΔL � L/I are integers. Because of (16), the channel
coefficient function Hl,k is then uniquely specified by its values on
the subsampled grid (l, k) = (l′ΔL, k′ΔK) with l′ = 0, . . . , I−1,

k′ = 0, . . . , D−1. Furthermore, (16) entails the relation

Hl′ΔL,k′ΔK = (−1)l′
D−1X
m=0

I−1X
i=0

F ′[m, i−I/2] e−j2π( k′m
D

− l′i
I

),

(24)

where F ′[m, i] is a cyclically extended version of F̃ [m, i] that equals

F̃ [m, i] for i = 0, . . . , L−1 and F̃ [m, i + L] for i = −L, . . . ,−1.
Suppose that pilot symbols al,k = pl,k are transmitted at time-

frequency positions (l, k) ∈ P , where P is a subset of the subsam-
pled grid (l′ΔL, k′ΔK), l′ = 0, . . . , I−1, k′ = 0, . . . , D−1. The
|P| pilots pl,k and their time-frequency positions are known to the
receiver. From (11), xl,k = Hl,k pl,k + zl,k for (l, k) ∈ P . The

receiver calculates channel coefficient estimates Ĥl,k at the pilot po-
sitions (l, k)∈P according to

Ĥl,k �
xl,k

pl,k
= Hl,k +

zl,k

pl,k
, (l, k) ∈ P . (25)

Thus, these Hl,k are known up to the additive noise terms zl,k/pl,k.
Next, we use the fact that all Hl′ΔL,k′ΔK can be expressed via

the Fourier transform relation (24). In vector notation, (24) reads

h =
√

ID Uuc , (26)

where we defined (i) the ID-dimensional complex “parameter” vec-

tor uc �
ˆ
u

T
c (0) · · ·uT

c (D−1)
˜T

with uc(m) �
ˆ
F ′[m,−I/2]

· · ·F ′[m, I/2−1]
˜T

; (ii) the ID-dimensional complex channel vec-

tor h �
ˆ
h(0) · · ·h(D−1)

˜T
with h(k′) �

ˆ
H0,k′ΔK HΔL,k′ΔK

· · ·H(I−1)ΔL,k′ΔK

˜
; and (iii) the ID× ID block matrix U with

I × I blocks Uk′,m � 1√
D

e−j2π
(k′

−1)(m−1)
D SF for k′, m = 1,

. . . , D, where F is the I× I IDFT matrix with entries (F)l′,i =
1√
I
ej2π

(l′−1)(i−1)
I for l′, i = 1, . . . , I and S is the diagonal I× I

matrix with diagonal entries 1,−1, 1,−1, . . .. We note that U is
unitary with coherence μ = 1. Furthermore, according to the previ-
ous section, uc is modeled as PNΛ-sparse.
|P| specific entries of the channel vector h are given by the chan-

nel coefficients Hl,k at the |P| pilot positions (l, k) ∈ P . Let h
(p)

denote the corresponding |P|-dimensional subvector of h. Further-
more, let Φc denote the |P|×ID submatrix of U obtained by select-
ing the corresponding |P| rows of U and multiplying the resulting

matrix by
p

ID/|P| (this implies that the columns of Φc have unit

Euclidean norm). We then have
p

1/|P|h(p) = Φcuc, which, up to
a constant factor, is (26) reduced to the pilot positions.

Next, we define vc as the vector
p

1/|P|h(p) but with the entries

Hl,k of h(p) replaced by their estimates Ĥl,k. Then, because of (25),

vc =
p

1/|P|h(p)+wc, where wc comprises the scaled noise termsp
1/|P| zl,k/pl,k, (l, k) ∈ P . Inserting

p
1/|P|h(p) = Φcuc, we

obtain vc = Φcuc + wc. This is equivalently stated as

v = Φu + w , (27)

where u �
ˆ
	{uT

c } 
{uT
c }

˜T
, v �

ˆ
	{vT

c } 
{vT
c }

˜T
, w �ˆ

	{wT
c } 
{wT

c }
˜T

, and Φ (defined in (6)) are the real versions of
uc etc. According to our construction, u is 2PNΛ-sparse. Thus,
(27) is seen to be a sparse reconstruction problem of the form (1),
with dimensions M =2ID and N =2|P| and sparsity S =2PNΛ.

We can hence use the extended basis pursuit (2) to obtain an esti-
mate of u or, equivalently, of F ′[m, i]. From this estimate, estimates
of all channel coefficients Hl,k are finally obtained via (16). The
convex program (2) is a simple instance of a second-order cone pro-
gram, which can be solved efficiently by interior-point methods [13].
Thus, CS-based channel estimation is computationally feasible, al-
beit more complex than classical least-squares channel estimation.
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Regarding the choice of the pilot positions (l, k) ∈ P , we recall
that these positions correspond to |P| indices within the index range
{1, . . . , ID} of the channel vector h. To be consistent with the CS
framework of Section 2, we select these positions uniformly at ran-
dom [1]. For good approximation quality in the sense of (4), the
number of pilots should satisfy condition (5), which becomes

|P| ≥ C3

`
ln(ID)

´4 · 2PNΛ

(recall that μ=1). This bound is not useful for actually determining
|P| because of the constant C3. However, the bound suggests that
the required number of pilots scales only linearly with the number
P of channel paths (scatterers) and the sparsity parameter NΛ , and
poly-logarithmically with the system design parameters I and D. In
practice, the pilot positions will be randomly chosen (and communi-
cated to the receiver) only once before the beginning of data trans-
mission. With high probability, they will lead to good performance
for arbitrary channels with at most P paths.

6. SIMULATION RESULTS

We next present numerical results to compare the performance of the
proposed CS-based channel estimation method with that of classical
least-squares channel estimation. In accordance with the DVB-T
standard [10], we simulated a CP-OFDM system with K = 2048
subcarriers and CP length N−K = 512, whence N = 2560. The
system employed a 4-QAM symbol alphabet.

During blocks of L = 2 transmitted OFDM symbols, we sim-
ulated a noisy doubly selective/dispersive channel whose discrete-
delay-Doppler spreading function Sh[m, i] was computed from (19)
and (20). We assumed P =20 propagation paths whose (continuous-
valued) delays τp/Ts and Doppler frequencies νpTs were randomly
chosen within [0, 511] × [−0.02/K, 0.02/K] for each block of 2
OFDM symbols (hence, the maximum allowed normalized Doppler
frequency—maximum Doppler divided by the subcarrier spacing—
is ±2%). The complex scatterer amplitudes ηp were randomly cho-
sen from zero-mean, rotationally invariant, complex Gaussian distri-
butions with three different variances. More precisely, we assumed
3 strong scatterers of equal power, 7 medium scatterers with power
10 dB below that of the strong scatterers, and 10 weak scatterers with
power 20 dB below that of the strong scatterers.

For least-squares channel estimation, we used two different rect-
angular pilot constellations, namely, (i) with spacings ΔL = 1 and
ΔK =4, corresponding to 1024 pilots or 25% of all available trans-
mit symbols, and (ii) with spacings ΔL = 1 and ΔK = 8, corre-
sponding to only 512 pilots or 12.5% of all symbols. For CS-based
channel estimation, we selected uniformly at random 511 pilots from
the rectangular pilot constellation (i), corresponding to 12.48% of all
symbols—i.e., about the number of pilots used in constellation (ii)
and about half that used in constellation (i). These three pilot con-
stellations were held fixed during all simulation runs. The CS-based
method used the classical basis pursuit, i.e., (2) with ε = 0; this al-
lows a faster implementation than extended basis pursuit with ε>0.
The MATLAB function l1eq pd() from the toolbox �1-MAGIC
[14] was employed.

Fig. 1 depicts the mean square error (MSE) and the symbol er-
ror rate (SER) versus the signal-to-noise ratio (SNR). It is seen that
the CS-based method (with 511 pilots) significantly outperforms the
least-squares method with 512 pilots. The extremely poor perfor-
mance of the least-squares method is due to the fact that the Shannon
sampling theorem is violated by the pilot grid. In contrast, the CS-
based method is able to produce reliable channel estimates even far
below the Shannon sampling rate. Compared with the least-squares
method with 1024 pilots, we observe only a relatively small perfor-
mance degradation of the CS-based method with 511 pilots, espe-
cially in the low-to-medium SNR regime (up to 20 dB).
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 Least−squares (12.5% pilots)
 CS−based (12.48% pilots)
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 CS−based (12.48% pilots)
 Least−squares (25% pilots)

Fig. 1. Performance of CS-based and conventional least-squares
channel estimation. Left: MSE versus SNR, right: SER versus SNR.

7. CONCLUSION

We have proposed a channel estimation technique based on the re-
cently introduced principle of compressed sensing (CS). Our results
demonstrate that CS makes it possible to exploit the “delay-Doppler
sparsity” of wireless channels for a reduction of the number of pi-
lots required for channel estimation within multicarrier systems. We
conjecture that the performance of the proposed technique can be
further improved by using more sophisticated CS methods.
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