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ABSTRACT
Motivated by recently published physics based scattering
SISO and MIMO channel models in mobile communica-
tions [1, 2], a new adaptive channel prediction based on
non-stationary polynomial phase signals is proposed. To
mitigate the influence of the time-varying amplitudes and to
reduce the computation complexity, an iterative estimation
of the polynomial phase parameters using the Non-linear
instantaneous LS criterion is proposed. Given the polyno-
mial phase parameters, the time-varying amplitudes are esti-
mated using the Kalman filter. The performance of the new
predictor is evaluated by Monte Carlo simulations in SISO
scenarios with multiple scattering clusters. The new predic-
tor outperforms the classical Linear Prediction and previous
prediction methods based on sinusoidal modeling.

Index Terms - Radio propagation, Rayleigh channels,
Nonlinear estimation, Adaptive Kalman filtering, Prediction
methods

1. INTRODUCTION

Different from the power spectrum based non-parametrical
methods [3], radio channel prediction based on parametric
modeling attracted much interests in last several years due
to its potential advantage on long range channel prediction
and compression of feedback information [4, 5, 6]. Re-
cently, i.e. in [1], a physics based scattering model was pro-
posed to simulate narrow band SISO Rayleigh fading chan-
nels, which is similar to the recently standardized 3GPP
MIMO channel models [2]. In this model, the observed
multipath channel y(t) from p scattering clusters is mod-
eled as

y(t) = h(t) + e(t) =

p∑
i=1

hi(t) + e(t), (1)

hi(t) = si(t)e
jφi(t), (2)

where e(t) is an additive Gaussian noise with zero mean and
variance σ2

e . By definition, φi(t) = 2πli,c(t)/λ, λ is the

wavelength, li,c(t) is the length of the virtual propagation
path from the transmitter antenna to the receiver antenna
via the center of gravity of the ith cluster at (xi,c, yi,c) =∑qi

j=1(xi,j , yi,j)/qi, where (xi,j , yi,j) is the coordinate of
the jth scatter in the ith cluster, and qi is the number of scat-
ters. These scatters are assumed to be uniformly distributed
in a circular area with a radius of γλ, where γ describes
the roughness of the scattering surface, and 0 ≤ γ < 1.
Let Δli,j(t) = li,j(t) − li,c(t), where li,j(t) is the length
of the propagation path from transmitter antenna to receiver
antenna via the scatter at (xi,j , yi,j). The time-varying am-
plitude si(t) in (2) can be expressed as

si(t) = s′i

qi∑
j=1

ej2πΔli,j(t)/λ, (3)

where s′i is the reflected amplitude of scatters in the ith

cluster, which is assumed to be constant over the scatter-
ing cluster and time. In this paper, we assume that y =
[y(t), y(t − 1), y(t−N + 1)]T is observed, where T is the
transpose operation. The channel h(t+L)will be predicted,
where L > 0 is the prediction horizon.
In previous parametric prediction methods based on si-

nusoidal modeling [4, 5, 6], φi(t) is assumed to be a linear
function of time, i.e. φi(t) = ωit, where the Doppler fre-
quencyωi is assumed to be constant in the observation inter-
val. In fact, the time-varying phases are due to the relative
movement between the mobile and the scattering clusters,
which are nonlinear functions of time and result in time-
varying Doppler frequencies [6]. In this paper, the nonlin-
earity of φi(t) is approximated by a polynomial of time t
with orderM , i.e.

φi(t) ≈
M∑

m=1

βi,mtm. (4)

The pM model parameters of the polynomial phase signals
(PPS) are collected in the vector θ = [θT

1 , · · · , θT
p ]T , where

θi = [βi,1, · · · , βi,M ]T .
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Proposed Approach
1. Estimate the PPS parameters using the Nonlinear in-
stantaneous LS techniques iteratively.

2. Estimate the dynamic model for the varying ampli-
tudes.

3. Predict channel using the Kalman filter with the esti-
mated parameters.

The first step is presented in Section 2. The second and the
third step are described in Section 3. The performance of
the proposed approach is evaluated using Monte Carlo sim-
ulations in SISO scenarios with multiple scattering clusters.

2. PPS PARAMETER ESTIMATION USING NILS

Given p and M , as the first step of the predictor design,
an estimation of the model parameters θ using Nonlinear
Instantaneous Least Square (NILS) criterion is proposed in
this section [7, 8]. By assuming the slowly time-varying
amplitude, si(t), within a local time interval with length n
to be constant, the estimate of θ is, i.e.,

θ̂ = arg min
θ

t−N+n∑
k=t

‖y(k)− Aks(k)‖2, (5)

where

y(k) = [y(k), · · · , y(k − n + 1)]T , (6)
Ak = [a1,k, · · · , ap,k], (7)
ai,k = [ejφi(k), · · · , ejφi(k−n+1)]T , (8)
s(k) = [s1(k), · · · , sp(k)]T . (9)

Further, the Least Square (LS) estimate of the instantaneous
amplitude s(k) is

ŝ(k) =
(
AH

k Ak

)−1

AH
k y(k) = A†

ky(k), (10)

where H is the Hermitian transpose. Note that the selection
of n is a user’s choice. For fast time-varying amplitudes, a
small n is selected. Meanwhile, the resolution of the model
parameters is reduced. When n = N , NILS becomes the
standard Nonlinear LS (NLLS) [9, 10].
Since the criterion function (5) contains pM parameters,

the full non-linear optimization is computationally inten-
sive. An iterative parameter estimate is proposed, where the
NILS problem in (5) is solved using an iterative SAGE/RELAX
procedure following [11, 12]. A detailed description of the
algorithm is given in the appendix in Section 6.

3. ADAPTIVE CHANNEL PREDICTION BASED ON
PPS BASES

Given θ̂, an adaptive channel predictor similar to [1] is pro-
posed in this section. Let si,z(t) = si(t)− μs,i, where μs,i

is the nonzero-mean of si(t) [1]. An AR(d) model is pro-
posed to describe the dynamics of si,z(t), i.e.

si,z(t + 1) =

d∑
l=1

αi,lsi,z(t− l + 1) + vi(t), (11)

= α
T
i si,z(t) + vi(t), (12)

whereαi = [αi,1, · · · , αi,d]
T , si,z(t) = [si,z(t), · · · , si,z(t−

d+1)]T , and d is small. The vi(t) is a driving noise with pdf,
CN (0, σ2

v,i). Note that the local amplitude estimates ŝi(k)
can be obtained from the NILS procedure (27). These esti-
mates can be further used to estimate μs,i and ŝi,z(t). The
AR parameters αi,d and σ2

v,i can then be estimated from
ŝi,z(t) using LS. The signal model (1) with the PPS bases
(4) can then be expressed in a state-space structure as

x(t + 1) = Γx(t) + u(t), (13)
y(t) = cT (t)x(t) + e(t), (14)

where

x(t) = [xT
1 (t), · · · , xT

p (t)]T , (15)

xi(t) = [si,z(t), · · · , si,z(t− d + 1), μs,i]
T , (16)

Γ = diag(Γ1, · · · ,Γp), (17)

Γi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

αi,1 αi,2 · · · αi,d−1 αi,d 0
1 0 · · · 0 0 0
0 1 0 · · · 0 0
...

. . .
...

...
0 0 1 0 0
0 0 · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(18)
u(t) = [uT

1 (t), · · · , uT
p (t)]T , (19)

ui(t) = [vi(t),0
T
d−1, wi(t)]

T , (20)
c(t) = [cT1 (t), · · · , cTp (t)]T , (21)

ci(t) = [ejφ̂i(t),0T
d−1, e

jφ̂i(t)]T . (22)

In the state-space model, the variance of wi(t), σ2
w,i, should

be set much smaller than the variance of vi(t), since wi(t)
is the innovation noise for the mean amplitude which is con-
stant. Then, the prediction of the h(t + L) is

ĥ(t + L|t) = cT (t + L)ΓLx̂(t|t), (23)

where x̂(t|t) is obtained by the Kalman filter. The initial
covariance matrix Cx = diag(Cx,1, · · · ,Cx,p), Cx,i =
diag([σ2

s,i1
T
d , 0]), and the initial state xi(0|0) = [0T

d , μ̂i]
T .

The covariance matrix of u(t) is Q = diag(Q1, · · · ,Qp),
Qi = E[ui(t)uH

i (t)] = diag([σ̂2
v,i,0

T
d−1, σ̂

2
w,i]). The dif-

ference between the predictor in (23) and the one in [1] is
in the observation vector c(t) in (21). The non-stationary
PPS bases are used in (23), whereas [1] used single-cluster
sinusoid with time-varying amplitudes.
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4. SIMULATIONS

In the Monte Carlo simulations, the channels are generated
using the scattering model in (2). Motivated by the funda-
mental physical similarity, the quadratic phase law,M = 2,
in Synthetic Aperture Radar [13], is adopted in this paper.
More detailed discussion on model order selection can be
found in [14]. Note that there is no true model parame-
ters, since the scatter model does not fit our assumed data
model perfectly. The proposed predictor (23) is evaluated.
In the simulations, the distances from MS to BS and scat-
tering clusters are 100 m and 10 m respectively. The mobile
is moving at a constant speed of v = 10 m/s towards the
BS. The number of clusters p is 6. Each cluster consists of
100 scatters, and they are uniformly distributed in a circular
area with a radius of γ = λ/2. The wavelength λ is 0.15 m.
The DOAs of the cluster centers are uniform in [−π, π) and
s′i ∼ CN (0, 1/qi). The number of samples N is 500. The
length of a local interval n is 100. The prediction horizon
L is 5, which corresponds to approximately λ/3. The order
of the AR model of the time varying amplitude d is 1. The
number of Monte Carlo simulations is 200. The Normalized
Mean Square Error (NMSE), i.e.,

E[e2
NSE] =

N · |h(t + L)− ĥ(t + L)|2

hHh
, (24)

is used to measure the prediction accuracy.
In the iterative estimation method proposed in Section 6,

the Simplexmethod is used in (26) [15]. The initial values of
the parameters of the polynomial phases in Step 3 are set to
be [ωo, 0], where ωo = arg max

ω

∣∣F{yb
r(t)}

∣∣2, where F{·}
is the DFT operator. The previously estimated parameters
are used as the initial values in Step 4. The tolerance ε in
(34) is 0.01. For comparison, the Linear Prediction (LP)
and the sinusoidal modeling based Linear Minimum Mean
Square Error (LMMSE) predictor, (i.e. eq. (2) and eq. (29)
in [6]), are tested using the same data. The order of LP
and LMMSE prediction is the same as the number of PPS
components and is fixed.
The simulation results are presented in Figure 1. It can

be seen that the new predictor based on PPS modeling out-
performs LP. The performance of the LMMSE method is
much worse than the others, and is therefore not included
in the figure. At high SNR’s, the performance of the new
predictor decreases slowly with the increase of SNR. This
is due to both the model errors and the parameter estimation
errors from the suboptimal iterative procedure.

5. CONCLUSIONS

A new adaptive channel predictor based on non-stationary
PPS modeling is proposed. An iterative parameter estima-
tion using the NILS criterion is proposed to mitigate the in-
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Fig. 1. Performance evaluation. The number of scattering
cluster p = 6, the radius of the clusters is λ/2, the number
of scatters in single cluster is 100, the number of channel
samples N = 500, the mobile velocity v = 10 m/s, the
distances from MS to the center of gravity of the clusters
and the BS are 10 m and 100 m respectively.

fluence of the time-varying amplitude and reduce the com-
putation complexity. The time-varying amplitudes are esti-
mated using the Kalman filter. The new predictor outper-
forms the classical LP and the stationary sinusoidal model
based LMMSE channel predictors in simulations.

6. APPENDIX: ITERATIVE PPS PARAMETER
ESTIMATE

An iterative estimate of PPS parameters using NILS is pro-
posed as follows:
1. Set q = 0, and let the initial residual signal be

yr(k) = y(k), k = t, t− 1, · · · , t−N + n.(25)

2. Let q = q + 1.

3. Estimate parameters associated with a new compo-
nent in the residual signal yr(k), i.e., θq , using

θ̂q = arg max
θq

t−N+n∑
k=t

‖aH
q,kyr(k)‖2. (26)

The estimate of the instantaneous amplitude ŝb
q(k)

and channel ĥ
b

q(k) are given by

ŝb
q(k) = (aH

q,kaq,k)−1aH
q,kyr(k), (27)

ĥ
b

q(k) = [ĥb
q(k), · · · , ĥb

q(k − n + 1)]T , (28)

ĥb
q(k) = ŝb

q(k)ejφ̂b
q(k), (29)

where b indicates before parameter estimate update in
Step 5), and φ̂b

q(k) is calculated from (4) using θ̂q .
4. Let

Ĥ
b

=

[
q∑

i=1

ĥ
b

i(t), · · · ,

q∑
i=1

ĥ
b

i(t−N + n)

]
, (30)
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and initialize the signal estimates after update by

ĥ
a

i (k) = ĥ
b

i(k), (31)

for i = 1, · · · , q and k = t, t − 1, · · · , t − N + n,
where a indicates after parameter estimate update in
Step 5).

5. Update ĥ
a

l (k) using (26)-(29) by setting

yr(k) = y(k)−

q∑
i=1
i�=l

ĥ
a

i (k), (32)

for l = 1, · · · , q and k = t, t− 1, · · · , t−N + n.

6. Put

Ĥ
a
=

[
q∑

i=1

ĥ
a

i (t), · · · ,

q∑
i=1

ĥ
a

i (t−N + n)

]
. (33)

If
‖Ĥ

a
− Ĥ

b
‖2F

‖Ĥ
b
‖2F

> ε, (34)

where ‖ · ‖2F is the Frobenius norm and ε is a user-
selected tolerance, let Ĥ

b
= Ĥ

a
and goto Step 5).

7. If q < p, let

yr(k) = y(k)−

q∑
i=1

ĥ
a

i (k), (35)

for k = t, t− 1, · · · , t−N + n, and

ĥ
b

i(k) = ĥ
a

i (k), (36)

for i = 1, · · · , q, and k = t, t − 1, · · · , t − N + n,
and goto Step 2) searching for a new component.

Note that the nonlinear optimization problem in (26) can be
solved using grid search and/or any classical local search
method, such as, Simplex in [15].
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