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ABSTRACT
This paper studies the analytical performance of a Rayleigh-
product multiple-input multiple-output (RP-MIMO) channel
in the presence of spatial correlation and cochannel interfer-
ences (CCI) at the receiver side. With optimal combining, we
first derive a closed-form expression for the cumulative dis-
tribution function (C.D.F.) of the maximum eigenvalue of the
resultant channel matrix. This result permits us to analyze the
outage probability of the RP-MIMO channel. In addition, the
ergodic capacity of a keyhole MIMO channel with cochannel
interferences is also derived from these new statistical results.

Index Terms— Cochannel interference, Information rates,
MIMO systems.

1. INTRODUCTION

Pioneering work by Foschini et al. [1] has revealed the sub-
stantial increase in capacity and performance improvement
by employing multiple antennas at both the transmitter and
the receiver [well known as multiple-input multiple-output
(MIMO) antenna] over a single-antenna system. Neverthe-
less, in practice, the performance of MIMO systems is des-
tined to be degraded due to the presence of cochannel inter-
ference (CCI) and various physical channel phenomena such
as keyhole, spatial correlation and so on. For this reason, a
great deal of research has been carried out on controlling and
managing CCI in a wireless network and characterizing the
impacts of the channel impairments on the capacity.
It has been very well known that multiple antennas at the

receiver can effectively suppress CCI by maximizing the re-
ceived signal-to-interference plus noise ratio (SINR) using a
minimum-mean-square-error (MMSE) decorrelator [2]. This
optimal combining has also been extended to MIMO antenna
systems [3] and extensively investigated for Rayleigh [4–6]
and Rician fading channels [7].
While most of the prior studies were based on the rich-

scattering assumption that renders a full-rank MIMO channel
matrix, it has, however, been evident from recent field mea-
surements, e.g., [8], that the channel may in fact exhibits a
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reduced-rank behavior due to the lack of scatterers around the
transmitter and receiver terminals. A more general channel
model which embraces this aspect of channel phenomenon,
as well as allowing for correlation amongst the antennas and
scatterers, has recently been proposed in [9]. The model is
referred to as the double-scattering (DS) model. Despite its
generality and practical significance, very few analytical re-
sults are available and existing results tended to focus on the
information-theoretic behavior in ergodic capacity [10, 11] and
the diversity-multiplexing tradeoff [12, 13]. The performance
of a DS channel with CCI is not at all understood.
This paper’s aim is to study the statistical properties of a

DS-MIMO channel with CCI using optimum combining. To
proceed, in particular, we consider a Rayleigh-product (RP)
MIMO channel which is a special case of a DS channel with
an identity scattering matrix, and assume, as in [4], that the
channel is “interference-limited” with equal-power interfer-
ers. Spatial correlation at the receive antennas is also consid-
ered. Our main contribution is that we derive a closed-form
expression for the cumulative distribution function (C.D.F.)
of the maximum eigenvalue of a RP-MIMO channel matrix,
which permits to analyze the outage probability performance
of the RP-MIMO channel using optimum combining in the
presence of CCI and the ergodic capacity of an interference-
limited keyhole channel.

2. SYSTEMMODEL

Consider a MIMO system equipped with Nt antennas at the
transmitter and Nr antennas at the receiver. We assume there
exist NI cochannel interferers with NI ≥ Nr. The received
signals in vector form can be written as

y =
√

P0H̃ts0 +

NI∑
n=1

√
Pnh̃nsn + η (1)

where s0 denotes the transmitted symbol of the desired user,
{sn}n≥1 denotes the signals transmitted from the interferers,
with E[|sn|2] = 1 ∀n, so that {Pn} are the transmitted power
of the users, t ∈ C

Nt denotes the transmit beamforming vec-
tor of the desired user with ‖t‖ = 1, h̃n = Σ

1

2 hn ∈ C
Nr
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is the complex channel vector of the nth interferer with Σ ∈
C

Nr×Nr representing the correlation matrix at the receiver,

H̃ =
1√
Ns

Σ
1

2 H1H2 (2)

in whichH1 ∈ C
Nr×Ns andH2 ∈ C

Ns×Nt are random ma-
trices, is the Rayleigh-product MIMO channel between the
desired transmitter and receiver with Ns being the number of
scatterers in the environment, and η is the complex Gaussian
noise vector with independent elements following CN (0, σ2).
In addition, The random entries ofH1,H2 and {hn} are inde-
pendent and follow CN (0, 1). Now, defineHI � [h1 · · · hn]

so that H̃I � Σ
1

2 HI . Then, (1) can be re-expressed as

y =
√

P0H̃ts0 + H̃IP
1

2

I sI + η (3)

where PI = diag{P1, . . . , Pn}, and sI = [s1 · · · sNI
]T .

At the receiver, the signals, y, are combined to produce
the estimate of the transmitted symbol of the desired user by
multiplying a vector r†. In [3], it is shown that an MMSE
decorrelator is optimal in maximizing the output SINR, i.e.,

r = μ
(
H̃IPIH̃

†
I + σ2I

)−1

H̃t (4)

where μ is an arbitrary constant which does not contribute
to the SINR. The optimal t is also found to be the principal
eigenvector of the channel, Ξ � H̃†(H̃IPIH̃

†
I + σ2I)−1H̃,

which as a result gives SINRmax = P0ξmax, where ξmax de-
notes the maximum eigenvalue of Ξ.
The statistical property of SINRmax is important in charac-

terizing the performance of the channel, which can be studied
through the statistical distribution of ξmax. To do so, we con-
sider an interference-limited environment where the noise is
neglected, and that the interferers have an equal-power, i.e.,
PI � P1 = · · · = PNI

. As a consequence, we have

SIRmax

Δ
= ρmax =

P0

PI

λmax (5)

where λmax is the largest eigenvalue of

F �
1

Ns

H
†
2H

†
1

(
HIH

†
I

)−1

H1H2. (6)

3. C.D.F. OF λMAX

In this section, we present the exact expression for the C.D.F.
of λmax in closed-form, which will be useful in deriving and
analyzing the outage probability and the ergodic capacity of
the channel, as we shall do in Section 4.

3.1. C.D.F. of λmax when Nt ≤ Nr

Before presenting our main results, we find it useful to define
the following notations: m = min(Nr, Ns), n = max(Nr, Ns),
p = max(0,m − Nt), and q = max(m,Nt).

Theorem 1 If Nt ≤ Nr, the C.D.F. of λmax is given by

Fλmax
(x) = C1 detΔ(x) (7)

where C1 is given by (8) (see top of the next page) andΔ(x)
is anm × m matrix function of x with

[Δ(x)]i,j =

{
(−1)m−Nt−iV1 for i ≤ p,

V2 − R(x) for i > p,
(9)

in which V1, V2 and R(x) are defined in (10) (see top of the
next page) where B(·, ·) is the beta function [14, (8.380.1)],
and U(·, ·, ·) is the confluent hypergeometric function of sec-
ond kind [14, (9.210.2)].

Proof: We sketch the proof when Ns ≤ Nt ≤ Nr and
the proofs for the cases Nt ≤ Ns ≤ Nr and Nt ≤ Nr ≤ Ns

will be similar. Define W � H
†
1(HIH

†
I)−1H1 with eigen-

values 0 < φ1 < · · · < φNs
< ∞. The maximum eigenvalue

of F conditioned onW is given in [15] as

Fλmax
(x|W) =

detΨ(x)

detV
∏Ns

i=1
Γ(Nt − i + 1)

, (11)

whereV is an Ns × Ns matrix and

detV =

(
Ns∏
i=1

φNt

i

) ∏
1≤l≤k≤Ns

(
1

φk

− 1

φl

)
. (12)

Also,Ψ(x) is an Ns × Ns matrix with entries

[Ψ(x)]i,j = φNt−i+1
j γ

(
Nt − i + 1,

xNs

φj

)
, (13)

where γ(., .) is the lower incomplete gamma function. To
obtain the unconditional C.D.F. of λmax, we average (11) over
the joint P.D.F. of φ1, . . . , φNs

which is given by [16]

f(W) =

C1

Ns∏
j=1

φNr−Ns

j (1 + φj)
−NI−Ns

∏
1≤l≤k≤Ns

(φl − φk)2.

(14)

As a result, we get

Fλmax
(x) =

C1∏Ns

j=1
Γ(Nt − i + 1)

L(x) (15)

where

L(x) =

∫
W

detΨ(x) det
[
φNs−i

j

]
Ns∏
j=1

φNr−Nt−1
j (1 + φj)

−NI−NsdW

= det

[∫ ∞

0

gi,j(t)dt

]
(16)

where gi,j(t) = tNs+Nr−i−j(1+t)−NI−Nsγ(Nt−i+1, xNs

t
).

Finally, integrating using [14, (3.383.5)] and after some math-
ematical manipulation, the desired result can be proved. �
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C1 =

∏m

i=1
(−1)pNtΓ(NI + Ns − i + 1)∏m

i=1
Γ(NI − Nr + m − i + 1)Γ(m − i + 1)Γ(n − i + 1)

(8)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

V1 �B(n + i − j, NI − Nr + m − i + j),

V2 �B(m + n + p − i − j + 1, NI − q − Nr + i + j − 1),

R(x) =

q−i∑
k=0

(xNs)
k

Γ(k + 1)
× Γ(NI − Nr − p + i + j + k − 1)

× U(NI − Nr − p + i + j + k − 1, i + j + k − p − n − m,xNs),

(10)

3.2. C.D.F. of λmax when Nt ≥ Nr

Theorem 2 IfNt ≥ Ns ≥ Nr orNs ≥ Nt ≥ Nr, the C.D.F.
of λmax is given by

Fλmax
(x) =

C2 det Δ̂(x)∏Nt

i=1
Γ(Nt − i + 1)

(17)

where

C2 =

∏Nr

j=1
Γ(NI + Ns − j + 1)∏Nr

j=1
Γ(NI − j + 1)Γ(Ns − j + 1)Γ(Nr − j + 1)

(18)
and Δ̂(x) is an Nr × Nr matrix with entries[

Δ̂(x)
]

i,j
= Γ(Nt − i + 1)(V4 − U1(x)) (19)

where V3 and U1(x) are defined in (20) (see top of the next
page). Note that surprisingly, the result for the case Nt ≥
Nr ≥ Ns fits into the case Nt ≤ Nr (given in Theorem 1).

4. PERFORMANCE ANALYSIS

4.1. Outage probability

Outage probability is an important performance measure, it
is defined by the probability of system failing to achieve an
acceptable signal-to-interference ratio (SIR), γth. That is,

Pout = Pr(ρmax ≤ ρth) = Fλmax

(
PIρth

P0

)
. (21)

Fig. 1 provides numerical results Pout versus P0/(PIρth) for
various number of scatterers Ns when Nt = 3, Nr = 5, and
NI = 6. Results indicate that the number of scatterers has
significant impacts on the system performance and the less the
number of scatterers, the higher the outage probability. Fig.
2 validates the accuracy of the analytical results even when
there are non-negligible noise and unequal-power CCIs.

4.2. Ergodic capacity of keyhole channels

In this subsection, we present the ergodic capacity of keyhole
channels, which is an important special case of RP-MIMO
channels when Ns = 1, with CCI in the following theorem.
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Fig. 1: Outage probability of RP-MIMO channels for various P0/(PIρth)
without noise.
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Fig. 2: Outage probability of RP-MIMO channels for various P0/(PIρth)

with PI/σ2 = 3 (dB) and CCIs with unequal power. For the CCIs, we have
set

∑NI

i=1
Pi = NI and Pi = 2i−1

NI

, for i = 1, . . . , NI .
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⎧⎪⎪⎨
⎪⎪⎩

V3 � B(Ns + Nr − i − j + 1, NI − Nr + i + j − 1),

U1(x) =

Nt−i∑
k=0

(xNs)
k

Γ(k + 1)
Γ(NI − Nr + i + j + k − 1)U(NI − Nr + i + j + k − 1, i + j + k − Nr − Ns, xNs),

(20)

−5 0 5 10 15
1

2

3

4

5

6

7

8

SIR, P0/PI (dB)

E
rg

od
ic

 C
ap

ac
ity

 (b
ps

/H
z)

Analytical Nt=3,Nr=5,NI=6

Monte−Carlo
Analytical Nt=5,Nr=3,NI=6

Monte−Carlo
Analytical Nt=4,Nr=4,NI=6

Monte−Carlo

Fig. 3: Ergodic capacity of keyhole channels for various SIR = P0/PI .

Theorem 3 The ergodic capacity of keyhole channels with
CCI under optimum combining is

C =
(log2 e)G2,4

4,3

(
P0

PI

∣∣∣1,1,1−Nt,1−Nr

1,1+NI−Nr,0

)
Γ(NI − Nr + 1)Γ(Nt)Γ(Nr)

(22)

where Gm,n
p,q (· · · ) is the Meijer G-function in [14, (9.301)].

From (22), we observe that when Nr = NI , ergodic ca-
pacity is a symmetric function of Nt and Nr. Therefore, they
have the same impact on the ergodic capcity. The correctness
of the analytical expression (22) is verified by Fig 3.

5. CONCLUSION

This paper has examined the analytical performance ofMIMO
optimum combining systems in RP channels (i.e., a double-
scattering channel with identity correlation and scattering ma-
trices) with CCIs. We derived the system outage probability
based on the C.D.F. of the maximum eigenvalue of the re-
sultant channel. Using our new results, we also obtained the
ergodic capacity of keyhole-channels in closed-form.
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