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ABSTRACT

In this paper, we present a novel framework for resampling and com-
plexity reduction of tapped delay line channel models. In contrast to
related algorithms in this field, our framework guarantees that the
total impulse response power, the mean delay, as well as the RMS
delay spread of every input impulse response remains unchanged if
a solution is found. The phase angles of the output impulse response
are chosen such that the magnitude error of the channel realization
in the frequency domain is minimized as well.

Index Terms— channel modeling, channel emulation

1. INTRODUCTION
Real-time channel emulators are required for testing receiver imple-
mentations of communication systems. When building a real-time
channel emulator working in the digital baseband domain only, usu-
ally two problems occur:

1. Since channel emulators should support a multitude of different
channel models, the channel emulator’s sampling frequency may
not be the same or a multiple of the various channel model sam-
pling frequencies. This requires either resampling of transmit
and receive signals (which can be of very high complexity due to
rational resampling factors), or resampling of impulse responses.
The resampling of the impulse response can be performed off-
line in advance but results in spreading of a single tap energy to
multiple taps. Even a small set of (causal) taps results in an infi-
nite set of (non causal) taps by sinc interpolation. This increased
number of taps requires a lot of additional computational power
that would not be required if the channel emulator can work at
the original channel model’s sampling frequency.

2. The computational resources and the clock frequency of the
channel emulator hardware define the maximum number of
paths (taps), the maximum system bandwidth, and the maximum
number of channels (e.g. several channels of one MIMO chan-
nel) that can be emulated in real-time. To utilize the available
resources as best as possible, the number of taps considered by
the emulator should be as small as possible while representing
the original impulse response with high accuracy.

Because of these reasons, algorithms for reducing the number of taps
of an impulse response are necessary. Of course, such algorithms
have to preserve specific properties of the input impulse response
that affect the performance of the communication system. For exam-
ple, if the RMS delay spread of the channel is not preserved correctly
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this results in a different bit error floor due to delay dispersion [1,
p. 230].

Previous work on path reduction techniques aim at minimizing
either the errors in the impulse response power, the error in the delay
spread, or the magnitude error in the frequency domain, e.g. [2].
However, they do not guarantee that these errors are reduced to zero.
Also, several methods for converting the impulse response sampling
time were studied in [3]. These methods preserve either the mean
delay or the RMS delay spread.

In this paper, we present a novel framework for resampling and
path reduction of impulse responses specified by a tapped-delay-
line model. Our framework guarantees that the resulting impulse
response preserves the properties total power, mean delay, and RMS
delay spread at the same time for each impulse response. Further-
more, we select the phase angles of the resulting impulse response
taps such that the frequency domain error of each channel realiza-
tion is minimized as well. Our framework can also be applied to
measured channel impulse responses to extract a given number of
taps that have the three above guaranteed properties.

The paper is organized as follows. In Section 2 we present the
framework of our path reduction algorithm. The detailed, mathemat-
ical descriptions of the individual processing parts are explained in
Section 3. Implementation results are presented in Section 4 and our
conclusions are drawn in Section 5.

2. THE FRAMEWORK
Our framework shown in Figure 1 takes an impulse response an ∈ C

(n = 0, . . . , Na−1) with sampling time Ti as input. The output is an
impulse response (sampling time To) specified by the tap magnitudes
dm and the phase angles φm. The input impulse response has the
following three channel properties:

1. Total power:

P =

Na−1∑
n=0

|an|2 (1)

2. Mean delay:

τmean =
1

P

Na−1∑
n=0

|an|2 nTi (2)

3. RMS delay spread:

τRMS =

√√√√ 1

P

Na−1∑
n=0

|an|2 (nTi)
2 − τ2

mean (3)

After resampling and path reduction, we want these three properties
to be preserved exactly. Our framework consists of four major parts,
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Fig. 1. Overview of the impulse response complexity reduction.

labeled I. to IV. in Figure 1. In Part I., the input impulse response
is resampled from sampling time Ti to To using sinc interpolation.
Additionally, in Part I., the number of non-zero taps is reduced to
N (tap) using an ad hoc path combining method [4]. This method
generates an impulse response bm ∈ C that roughly approximates
the above three properties of an. In Part II., the energies of the taps
bm that are unequal to zero are stored in the variables ci ∈ R (i =
1, . . . , N (tap)) and the corresponding delay indices and delays in the
variables ti and τi, respectively. Part III. adjusts the energy values
ci to the energy values di ∈ R in order to guarantee that the total
power, the mean delay, and the RMS delay spread are exactly the
same as for the input impulse response. In Part IV., we select the
phase angles φm to the corresponding power levels dm, to achieve
a minimum magnitude error in the frequency domain. All four parts
of the framework are explained in detail in the next section.

3. DETAILS OF THE FRAMEWORK

Part I.: Resampling and Path Reduction
Given the impulse response an sampled with sampling time Ti, the
following algorithm resamples an to the channel simulator’s sam-
pling time To and reduces the number of paths to N (tap).

1. Resample the impulse response an to the channel simulator sam-
pling time To using a sinc1 interpolation filter of length 2M + 1
(In our simulations we chose M = 50).

bm =
To

Ti

M∑
n=−M

ansinc

(
π

Ti

(mTo − nTi)

)
(4)

2. Sum all tap values at negative time indices and add them to the
tap b0.

b0 =
∑
m≤0

bm (5)

This step ensures that the resulting impulse response remains
causal.

3. Construct the set M of all indices m, where the resampled im-
pulse response is not zero, i.e. bm �= 0.

M = {m|bm �= 0} (6)

If the number of non-zero taps is equal to the desired, maximum
number of taps, i.e. |M| = N (tap), terminate the iteration.

4. Find the index m(min) of the tap with the smallest energy unequal
to zero.

m(min) = arg min
m∈M

|bm|2 (7)

1Here, we define the sinc function as sinc (x) =
sin(x)

x

5. Find the nearest neighbor m(nb) of m(min) in M. If two nearest
neighbors exist, choose the one with smaller tap energy.

m(nb) = arg min
m∈M

|m−m(min)| (8)

6. Add and update the tap values accordingly.

bm(nb) ← bm(nb) + bm(min) (9)

bm(min) = 0 (10)

7. Go to Step 3.

Note that after the sinc interpolation the number of non-zero taps is
greatly increased. The combining in the subsequent path reduction
algorithm tries to “concentrate” the energy of the taps near to their
initial position (see also Figure 2). It should also be noted that the
tap positions of the resulting impulse response depend on the actual
input channel realization. This fact leads to a good approximation
of the power delay profile and our three impulse response proper-
ties [4]. By the post processing performed in Parts II. to IV. of our
framework, we adjust the tap energies and phases to improve the
accuracy of the impulse response approximation.

Part II.: Determine the N (tap) surviving paths and their delays
The set M now contains the N (tap) indices ti for which the energy
of the impulse response bm does not vanish. We define these indices
as the vector t = [t1, . . . , tN(tap) ]

T
. We also define the vector c =

[c1, . . . , cN(tap) ]
T

that stores all corresponding energies |bm|2 that
are larger than zero

ci = |bti |2 ; i = 1, . . . , N (tap), (11)

and the corresponding tap delay vector τ = [τ1, . . . , τN(tap) ]
T

with

the elements τi = tiTo (i = 1, . . . , N (tap)).

Part III.: Constrained Optimization of Tap Energies
Now we have found N (tap) delays τi and the corresponding tap en-
ergies ci. In the following we formulate a constraint optimization
problem of the tap energies that guarantees an exact match of the
total impulse response power, the mean delay, and the RMS delay
spread. The optimization problem and the constraints (h1, h2, h3,
and g) for the optimized tap energies d = [d1, . . . , dN(tap) ] are

d = arg min
d

f(d) = arg min
d

N(tap)∑
i=1

(di − ci)
2 , (12)

h1(d) =

N(tap)∑
i=1

di − P = 0, (13)

h2(d) =

∑N(tap)

i=1 diτi

P
− τmean = 0, (14)

h3(d) =

∑N(tap)

i=1 diτ
2
i

P
− τ2

mean − τ2
RMS = 0, (15)

g(d) = d ≥ 0. (16)

In the last constraint, we mean that every component of d is larger
or equal than zero. In other words, the power on every delay τi is not
allowed to become negative. The Kuhn-Tucker conditions [5, p. 777]
state that for a local minimum d∗ there exists a Lagrange multiplier
vector λ = [λ1, λ2, λ3]

T and a Lagrange multiplier vector μ ≤ 0
such that

g(d∗)T μ = 0

∇f(d∗) +∇h(d∗)T λ +∇g(d∗)T μ = 0. (17)
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We can therefore calculate our minimum d∗ from Equation (17) by
forming the Lagrangian

L =

N(tap)∑
i=1

(di − ci)
2 +

+ λ1

⎛
⎝N(tap)∑

i=1

di − P

⎞
⎠ +

+ λ2

(∑N(tap)

i=1 diτi

P
− τmean

)
+

+ λ3

(∑N(tap)

i=1 diτ
2
i

P
− τ2

mean − τ2
RMS

)
+

+

N(tap)∑
i=1

μidi

and its derivation with respect to di

∂L

∂di
= 2 (di − ci) + λ1 + λ2

τi

P
+ λ3

τ2
i

P
+ μi = 0 (18)

→ di = ci − λ1

2
− λ2

2

τi

P
− λ3

2

τ2
i

P
− μi. (19)

We now have to determine if the constraint for di is inactive (di ≥ 0
and μi = 0) or active (di = 0). If we define the set of inactive
indices i as I and the number of inactive indices as |I| we can cal-
culate

di =

{
ci − λ1

2
− λ2

2
τi
P
− λ3

2

τ2
i

P
; i ∈ I

0 ; i /∈ I . (20)

If we use Equation (20) in our conditions for the resulting impulse
response (Equations (13), (14), and (15)) we obtain for the Lagrange
multipliers λi the following set of equations

P =
∑
i∈I

xi − |I|
2

λ1 −
∑

i∈I τi

2P
λ2 −

∑
i∈I τ2

i

2P
λ3,

P τmean =
∑
i∈I

xiτi −
∑

i∈I τi

2
λ1 −

∑
i∈I τ2

i

2P
λ2 −

∑
i∈I τ3

i

2P
λ3,

P
(
τ2

RMS + τ2
mean

)
=

=
∑
i∈I

ciτ
2
i −

∑
i∈I τ2

i

2
λ1 −

∑
i∈I τ3

i

2P
λ2 −

∑
i∈I τ4

i

2P
λ3. (21)

Using a vector-matrix notation this system of linear equations can be
rewritten as

Kλ = y (22)

with

K =
∑
i∈I

⎡
⎣ 1 τi τ2

i

τi τ2
i τ3

i

τ2
i τ3

i τ4
i

⎤
⎦ =

∑
i∈I

Ki, (23)

λ = [Pλ1, λ2, λ3]
T , (24)

and

y = 2P

⎡
⎣

∑
i∈I ci − P∑

i∈I ciτi − Pτmean∑
i∈I ciτ

2
i − P

(
τ2

RMS + τ2
mean

)
⎤
⎦ . (25)

Equation (23) can only be solved exactly if the matrix K is regular.
Since K is composed of a sum of rank one matrices Ki, at least three
matrices Ki have to be accumulated to obtain a full rank matrix K.
We can therefore only calculate λ for sets I where at least three
constraints for di are inactive (di > 0). This is also intuitively clear
because if we want to fulfill our three conditions (13)-(15) we have
to adjust at least three tap energies.

The Lagrange vector λ can now be calculated for different
choices of I and, with the knowledge of λ, we can calculate the di

from Equation (19). A solution di for a specific set I is valid if all
di ≥ 0 (i = 1, . . . , N (tap)). Among the many valid solutions for
di, we select the solution that minimizes the magnitude error of the
frequency response, as explained in Part IV. of our framework. Note
that it may happen—especially for small N (tap)—that the minimiza-
tion yields no valid solution at all. In such a case, either the number
of emulated taps has to be increased, or one of the three constraints
has to be abandoned.

The N (tap) energies di can be mapped to dm, specified at the
output sampling time To, by using

dm =

{
di ; m = ti

0 ; otherwise
. (26)

Part IV.: Select phases to minimize frequency response error
Once the tap delays τi have been found and the tap energies di have
been adjusted, we can optimize the phase angles φi at these tap de-
lays for a minimum mean square error in the frequency response. Let
us assume that the relation between input and output sampling rate
can be expressed by the rational number To

Ti
= No

Ni
. We can thus over-

sample the input impulse response by a factor of Ni and the output
impulse response by a factor of No to obtain the common sampling
time Ts = Ti

Ni
= To

No
. The oversampling is simply performed by in-

serting zeros between the known tap values. If the maximum number
of samples required for representing both, the input and the output
impulse response is Nmax = NiNoK, we can calculate the discrete
Fourier transform of the two impulse responses as a(f) = Daa and
h(f) = Dhh with the matrices Da and Dh denoting the discrete
Fourier transform matrices whose elements are defined as

(Da)k,n = e
−j 2π

NoK
kn

; k = 1, . . . , NoK; n = 1, . . . , NiK (27)

(Dh)k,i = e
−j 2π

NiK
kti ; k = 1, . . . , NiK; i = 1, . . . , N (tap). (28)

and the vector h as h =
[√

d1e
jφ1 , . . . ,

√
dN(tap)e

jφ
N(tap)

]T

. Note

that the ti = τi
To

(see description in Part II.) are the time indices that
correspond to the non-vanishing energy taps ci.

The unknown phases φi can now be determined by minimizing
the mean square error in the frequency response. We obtain with
DH

a Da = NiKI and DH
h Dh = NiKI∥∥∥a(f) − h(f)

∥∥∥2

2
= ‖Daa−Dhh‖22 =

= aHa− 2Re
{
hHDH

h Daa
}

+ hHh. (29)

A close look at Equation (29) reveals the following facts

• The expression aHa is the energy of the input impulse response
and has to be considered as constant.

• The expression hHh is the energy of the output impulse response
and was adjusted in Part III. to be the same as the input impulse
response energy. Therefore, this term is also constant.
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Fig. 2. Processing of one impulse response.

• The minimum of Equation (29) is therefore obtained when the
real part of the expression hHDH

h Daa is maximized. This is
achieved by choosing the phase angles φi of the vector h equal
to the phases of the vector DH

h Daa:

φm =

{
arg

(
DH

h Daa
)

i
; m = ti

0 ; otherwise
. (30)

The result of Equation (30) is somewhat intuitive since it means that
the phase angles at the new sampling rate (and thus at the new po-
sitions) can be calculated as follows. Firstly the original impulse
response is transformed to the frequency domain. Secondly, the fre-
quency response is transformed back to the time domain at exactly
the positions found by the path reduction algorithm. The phases ob-
tained by this method can now be used to form the final impulse
response.

Equation (29) is also a condition for selecting a specific solution
di among the many valid solutions found for different choices of I in
Part III.: The frequency response error is minimized, if the solution
di that maximizes hHDH

h Daa, is chosen.

4. IMPLEMENTATION RESULTS

The resampling, path reduction, and power optimization of one ex-
emplary impulse response is illustrated in Figure 2. The impulse
response an (first row of Figure 2) is generated according to the I-
Metra channel model scenario ”F” [6] at 100 MHz sampling rate.
The impulse response after resampling to a 120 MHz channel emu-
lator sampling frequency and after sinc interpolation is shown in the
second row of Figure 2. The impulse response after path reduction
to N (tap) = 8, is shown in the third row. We can see that the dis-
tribution of the tap energies approximately remains the same but is
accumulated in only N (tap) taps. Finally, the last row illustrates the
power adjustment (Part III. of our framework) of the tap energies.
The properties total power, mean delay, and RMS delay spread of
the initial impulse response are perfectly preserved.

The magnitudes of the frequency responses corresponding to the
input and output channel impulse responses of Figure 2 are shown
in Figure 3. Although the magnitude error in the frequency domain
is minimized by Part IV. of our framework, the accuracy of the ap-
proximation is not very high. This is due to the fact that only a lim-
ited number N (tap) of phase angles (and not the corresponding tap
energies) are adjusted for minimizing the magnitude error in the fre-
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Fig. 3. Fourier transformations of the original and the resampled
impulse responses.

quency domain. If a small error in the frequency domain is desired,
this can be achieved by:

1. Increasing the number of taps in the final impulse response. Un-
fortunately, this also increases the complexity of the channel em-
ulation.

2. By using the tap energies and the phase angles in the mini-
mization, the error could be reduced but the preservation of
total power, mean delay, and RMS delay spread could not be
guaranteed anymore.

Thus, both time domain errors and frequency response errors can-
not be made arbitrarily small at the same time. In future work the
tradeoff between frequency and time domain error is worthwhile to
be investigated.

5. CONCLUSIONS
A novel framework for resampling and path reduction of given im-
pulse responses was introduced. In contrast to previous work in this
field, our framework guarantees that simultaneously, the impulse re-
sponse power, the mean delay, and the RMS delay spread are pre-
served exactly. The phase angles of the output impulse response are
selected such that the magnitude error in the frequency domain is
minimized. Since the minimization of the frequency domain error is
accomplished after the power adjustment and only by adjusting the
phase angles of the taps, the approximation can only be rough. Fu-
ture work should therefore aim at minimizing the frequency domain
error further while still preserving the above properties.
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