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ABSTRACT
An adaptive channel estimation scheme, exploiting the over-
sampled complex exponential basis expansion model (CE-
BEM), is presented for doubly-selective channels where we
track the BEM coefficients. We extend/modify the subblock-
wise tracking method using time-multiplexed (TM) training
recently proposed by [1]. Two finite-memory recursive least-
squares (RLS) algorithms, including the exponentially-weigh-
ted and the sliding-window RLS algorithms, are respectively
applied to track the channel BEM coefficients. Simulation ex-
amples illustrate the superior performance of our scheme to
the conventional block-wise channel estimator, and demon-
strate its improvement on our previous work in [1].
Index Terms— Doubly-selective channels, adaptive chan-

nel estimation, basis expansion models, recursive least-squares

1. INTRODUCTION
Due to multipath propagation and Doppler spread, wireless
channels are characterized by frequency- and time-selectivity.
Accurate modeling of time-variations of the channel plays a
crucial role for estimation and tracking purposes. Among
various models for channel time-variations, basis expansion
models (BEM) depict evolutions of the channel over a period
(block) of time, in which the time-varying channel taps are
expressed as superpositions of time-varying basis functions
in modeling Doppler effects, weighted by time-invariant co-
efficients [2].
In [1], a subblock-wise tracking approach was proposed

for doubly-selective channels using time-multiplexed (TM)
training. It exploits the complex exponential BEM (CE-BEM)
for the overall channel variations of each (overlapping) block,
and a first-order autoregressive (AR) model to describe the
evolutions of the BEM coefficients. Since the time-varying
nature of the channel can be well captured in the CE-BEM
by (known) Fourier basis functions, the time-variations of
the (unknown) BEM coefficients are likely much slower than
those of the channel, and thus more convenient to track in fast-
fading environments [1]. The slow-varying BEM coefficients
are updated via Kalman filtering at each training session; dur-
ing information sessions, channel estimates are generated by
the CE-BEM using the estimated BEM coefficients [1]. This
approach achieves better performance in fast-fading environ-
ments, than using conventional symbol-wise AR models or
block-wise BEM representations [1].
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The approach in [1], however, assumes that each BEM
coefficient follows a first-order AR process, which is not nec-
essarily true for a real-world channel, and possibly incurs
modeling error in estimation. In this paper, we seek an adap-
tive channel estimation scheme with no a priori models for
BEM coefficients. Two adaptive filtering algorithms with fi-
nite memory are considered for subblock-wise channel track-
ing: the exponentially-weighted recursive least-squares (RLS)
algorithm and the sliding-window RLS algorithm.
Decision-directed channel tracking using a polynomial

BEM has been investigated in [3], where the BEM coeffi-
cients are updated every block via the recursive least-squares
(RLS) algorithm within a sliding window. Decision-directed
channel estimation using Kalman filtering and polynomial or
CE-BEM for OFDM systems has been explored in [4, 5]. All
these contributions consider block-by-block updating unlike
our contribution where we exploit subblock-wise updating.
The distinction is as follows. Several subblocks comprise one
block. For parameter identifiability one needs the number of
subblocks at least as large as the number of basis functions
used for channel modeling.
Notations: Superscripts ∗, T , and H denote the complex

conjugation, transpose, and complex conjugate transpose re-
spectively. IN is the N × N identity matrix, and 0M is the
M -column null vector. We use �·� for integer ceiling and
�·� for integer floor. The symbol E {·} denotes expectation,
and ⊗ denotes the Kronecker product. δ (τ) is the Kronecker
delta, i.e., δ (τ) = 1 for τ = 0, and δ (τ) = 0 otherwise.

2. SYSTEMMODEL

Consider a single-input multi-output (SIMO), frequency- and
time-selective, finite impulse response (FIR) linear channel
with N outputs. Let {s (n)} denote a scalar sequence that is
input to the (L + 1)-tap channel with discrete-time response
{h (n; l)} (N -column vector channel response at time n to a
unit input at time n− l). Then the symbol-rate noisy channel
output is given by (n = 0, 1, . . .)

y (n) =

L∑
l=0

h (n; l) s (n− l) + v (n) (1)

where v (n) is white complex Gaussian noise, with zero mean
and autocorrelation E{v (n + τ)vH (n)} = σ2

vINδ (τ). In
TM training schemes, s (n) can be either a training or an in-
formation symbol.
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In CE-BEM [2, 6], over the k-th block consisting of an
observation window of TB symbols, the channel is repre-
sented as (n = (k − 1) TB , (k − 1) TB +1, . . . , kTB − 1 and
l = 0, 1, . . . , L)

h(n; l) =

Q∑
q=1

h(l)
q ejωqn, (2)

where one chooses (q = 1, 2, . . . , Q andK ≥ 1 is an integer)

T := KTB , Q ≥ 2 �fdTTs�+ 1, (3)

ωq :=
2π

T
[q − (Q + 1) /2] , L := �τd/Ts� , (4)

τd and fd are respectively the delay spread and the Doppler
spread, and Ts is the symbol duration. The BEM coefficients
h

(l)
q ’s remain invariant during this block, but are allowed to
change at the next block; the Fourier basis functions

{
ejωqn

}
are common for every block. Treating the basis functions as
known, estimation of a time-varying process is reduced to es-
timating the invariant coefficients over a block of TB symbols.
The BEM period is T = KTB , whereas the block size

is TB symbols. If K ≥ 2, the Doppler spectrum is over-
sampled (therefore (2) is called an over-sampled CE-BEM)
[6], compared with the critically-sampled case correspond-
ing to K = 1 [2]. For K = 1, the rectangular window of
this truncated discrete Fourier transform (DFT)-based model
introduces spectral leakage, resulting in significant amplitude
and phase distortion at the beginning and the end of the obser-
vation window [7]. To mitigate this leakage, the over-sampled
CE-BEM withK = 2 or 3 has been explored in [6].
We employ the TM training scheme of [2], which is opti-

mal for channels following critically-sampled CE-BEM rep-
resentations, in our subblock tracking approach. In [2], each
transmitted block consisting of TB symbols is segmented into
P subblocks of mb := TB/P symbols each. Every sub-
block consists of an information session of md symbols to-
gether with a succeeding training session of 2L + 1 symbols
(mb = md+2L+1). The training session contains an impulse
guarded by zeros (silent periods), which has the structure

cp :=
[
0T

L γ 0T
L

]T
, γ > 0. (5)

Note that training impulses only occur at time np := pmb +
md+L, (p = 0, 1, · · · ). By (1) at time np+l, (l = 0, 1, · · · , L),
the received signal is given by

y (np + l) = γh (np + l; l) + v (np + l) . (6)

3. SUBBLOCK-WISE RLS TRACKING
Consider two overlapping blocks (each of TB symbols) that
differ by just one subblock: the “past” block beginning at time
n0 and the “present” block beginning at time n0 + mb. Since
the two blocks overlap so significantly, one would expect the
BEM coefficients to vary only a little from the past block to
the present overlapping one. As in [1], we propose to track
the BEM coefficients (rather than the channel taps) subblock
by subblock for their variations.

Stack the BEM coefficients in (2) into vectors

h(l) :=
[
h

(l)T
1 h

(l)T
2 · · · h

(l)T
Q

]T

, (7)

h :=
[
h(0)T h(1)T · · · h(L)T

]T (8)

of size NQ andM := NQ (L + 1) respectively. The coeffi-
cient vectors of the p-th subblock will be denoted by h

(l)
q (p),

h(l) (p) and h (p). Defining

E (n) :=
[
e−jω1nIN e−jω2nIN · · · e−jωQnIN

]T
,

the received signal at time np + l is given by

y (np + l) = γEH (np + l)h(l)(p) + v (np + l) . (9)

Further define

Ψ (p) :=

⎡
⎢⎢⎣

E (np)
E (np + 1)

. . .
E (np + L)

⎤
⎥⎥⎦

H

,

ys (p) :=
[
yT (np) yT (np + 1) · · · yT (np + L)

]T
,

and vs (p) likewise. By (9), it follows that

ys (p) = γΨ (p)h(p) + vs (p) , (10)

which gives us a formulation to estimate the BEM coefficients
using training sessions.
Our goal is to adaptively estimate the doubly-selective

channel via subblock-wise tracking, by exploiting the invari-
ance of the BEM coefficients over each block. Since CE-
BEM is periodic with period T , the algorithm memory should
be less than T to avoid periodicity of the BEM influencing
the results. Therefore, an adaptive algorithm with finite mem-
ory is preferred which we implement via either exponentially-
weighted RLS or sliding-window RLS approaches.

3.1. Exponentially-Weighted RLS Tracking

Based on (10), we can apply the exponentially-weighted RLS
(EW-RLS) algorithm [8, Chapter 12] to tracking the channel
BEM coefficients. Choose h to minimize the cost function

β‖h‖2 +

p∑
i=0

λp−i‖ys(p)− γΨ(p)h‖2

where β > 0 is a regularization parameter and 0 < λ < 1
is the forgetting factor. Unlike “standard” EW-RLS as ap-
plied to symbol-wise updating, in subblock-wise updating,
one takes λ to be (much) smaller than one (0.6 or 0.7 for in-
stance).
Mimicking [8, Chapter 12], the EW-RLS algorithm has

the following steps:
1. Initialization:

ĥ (−1) = 0M , P (−1) = βIM .
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2. RLS recursion: For p = 0, 1, . . .

Γ (p) = λIN(L+1) + γ2Ψ (p)P (p− 1)ΨH (p) ,

K (p) = γP (p− 1)ΨH (p)Γ−1 (p) ,

e (p) = ys (p)− γΨ (p) ĥ (p− 1) ,

ĥ (p) = ĥ (p− 1) + K (p) e (p) ,

P (p) = λ−1 [P (p− 1)− γK (p)Ψ (p)P (p− 1)]

where ĥ (p) is the estimate of h given the observations
{ys (0) ,ys (1) , . . . ,ys (p)}. Now we generate the channel
for the entire p-th subblock by the estimate ĥ (p) via the CE-
BEM (2) as

ĥ(n; l) = EH (n) ĥ(l) (p) (11)
for n = pmb, pmb +1, . . . , (p + 1)mb− 1. The definition of
ĥ(l) (p) is similar to (7).

3.2. Sliding-Window RLS Tracking

Compared with the EW-RLS algorithm that exponentially we-
akens the effects of all past data, the sliding-window RLS
(SW-RLS) algorithm only utilizes the data in a sliding win-
dow of lengthW [8]. Since the BEM coefficients are invariant
within a block of TB symbols, we set W = �TB/mb� sub-
blocks so that only the present subblock and the past W − 1
subblocks within one block are used for adaptation. To this
end, each iteration consists of a downdating stage that re-
moves the oldest received subblock sample from the window,
and an updating stage that inserts the next received subblock
sample into the window [8, Problem 12.7, p. 750]. The cost
function in this case is

β‖h‖2 +

p∑
i=p−W+1

λp−i‖ys(p)− γΨ(p)h‖2

where if p−W + 1 < 0, we set i = 0.
Mimicking [8, Chapter 12], the SW-RLS algorithm has

the following steps:
1. Initialization: For p = 0, 1, . . . ,W − 1, conduct chan-
nel tracking as in the EW-RLS algorithm, but with λ =
1. Then set

ĥu (W − 1) = ĥ (W − 1) ,

Pu (W − 1) = P (W − 1) .

2. RLS recursion: For p = W,W + 1, . . .

Downdating:

Γd (p− 1) = IN(L+1)

− γ2Ψ (p−W )Pu (p− 1)ΨH (p−W ) ,

Kd (p− 1) = γPu (p− 1)ΨH (p−W )Γ−1
d (p− 1) ,

e (p−W ) = ys (p−W )− γΨ (p−W ) ĥu (p− 1) ,

ĥd (p− 1) = ĥu (p− 1)−Kd (p− 1) e (p−W ) ,

Pd (p− 1) = Pu (p− 1)

+ γKd (p− 1)Ψ (p−W )Pu (p− 1) .

Updating:

Γu (p) = IN(L+1) + γ2Ψ (p)Pd (p− 1)ΨH (p) ,

Ku (p) = γPd (p− 1)ΨH (p)Γ−1
u (p) ,

e (p) = ys (p)− γΨ (p) ĥd (p− 1) ,

ĥu (p) = ĥd (p− 1) + Ku (p) e (p) ,

Pu (p) = Pd (p− 1)− γKu (p)Ψ (p)Pd (p− 1) .

Now ĥu (p) is the estimate of h based on the observations
{ys (p−W + 1) ,ys (p−W + 2) , . . . ,ys (p)}. Channel es-
timates are also generated for the p-th subblock using (11) by
setting ĥ (p) = ĥu (p).

4. SIMULATION EXAMPLES

A random doubly-selective Rayleigh fading channel is con-
sidered. We take L = 2 (3 taps) with output N = 1 in (1),
and h (n; l) are zero-mean, complex Gaussian with variance
σ2

h = 1/ (L + 1). For different l’s, h (n; l)’s are mutually in-
dependent and satisfy Jakes’ model. We consider a communi-
cation system with normalized Doppler spread fdTs = 0.01.
The additive noise was zero-mean complex white Gaussian,
and the (receiver) SNR refers to the average energy per sym-
bol over one-sided noise spectral density. During information
sessions the symbols are modulated by quadrature phase-shift
keying (QPSK) with unit power. The training session is de-
scribed by (5) with γ =

√
2L + 1 so that the average symbol

energy of training sessions is equal to that of information ses-
sions. We select the period of the CE-BEM T = 400, and
hence Q = 9 by (3). We set the subblock sizemb = 20 or 40
symbols.
Four channel estimation schemes are compared:
1. The block-wise channel estimation scheme in [2] (de-
noted by “block estimation [2]” in the figures), where
the transmitted symbols are segmented into consecu-
tive blocks each of TB symbols. Every block consists
of P (P ≥ Q) subblocks as in Section 2. For each
(non-overlapping) block, we estimate the BEM coeffi-
cients anew via a least-squares approach, and obtain the
channel estimates over this block by the CE-BEM. We
use an over-sampled CE-BEM with TB = T/2 when
mb = 20 so as to suppress spectral leakage; whereas
formb = 40, an over-sampled CE-BEM is not possible
(cannot obtain P ≥ Q), so that we choose TB = T .

2. The subblock-wise Kalman tracking in [1] (denoted by
“Kalman tracking [1]” in the figures): We assume the
BEM coefficients follow a first-order ARmodel h (p) =
αh (p− 1) + w (p), where the i.i.d. driving-noise vec-
tor w (p) is zero-mean complex Gaussian with auto-
correlation E

{
w (p)wH (p + τ)

}
= σ2

wIMδ (τ) and
σ2

w = σ2
h(1 − |α|2)/Q [1]. For mb = 20 and 40, we

take α = 0.995 and 0.97 respectively.
3. Proposed EW-RLS algorithm with β = 1. For mb =

20 and 40, we take the forgetting factor λ = 0.65 and
0.5 respectively (those values were determined empiri-
cally: see also comments just before Sec. 3.1).
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4. Proposed SW-RLS algorithm with β = 1. We take
TB = T/2 = 200, so that for mb = 20 and 40, the
window sizeW = 10 and 5 respectively.
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L=2, fdTs=0.01, d=5, QPSK, 500 Runs.
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Fig. 1. NCMSE vs SNR, under fdTs = 0.01,mb = 20 and 40, with
QPSK information symbols.

The normalized channel mean square error (NCMSE) and
the bit error rate (BER) of each scheme are studied. The
NCMSE is defined as

NCMSE :=

∑Mr

i=1

∑T−1
n=0

∑L

l=0

∥∥∥ĥ(i) (n; l)− h(i) (n; l)
∥∥∥

2

∑Mr

i=1

∑T−1
n=0

∑L

l=0

∥∥h(i) (n; l)
∥∥2

where h(i) (n; l) is the true channel and ĥ(i) (n; l) is the es-
timated channel at the i-th run, among total Mr runs. The
BER’s for the schemes are evaluated by employing a decision-
feedback equalizer (DFE) [9] at the receiver, designed by us-
ing the channel estimates from each scheme, with feedfor-
ward length lf = 8, feedback length lb = 2, and delay d = 5.
In each run, a symbol sequence of length 5000 is generated
and fed into a random doubly-selective channel. The first 200
symbols are treated as training overhead and thus discarded
in evaluations. All simulation results are based on 500 runs.
In Figs. 1 and 2, the performances of the four schemes

under different SNR’s are compared. Since the subblock-
wise tracking methods update every subblock, superior per-
formance has been achieved compared to the block-wise es-
timation scheme in [2]. [The block-wise scheme for mb=20
exhibits numerical ill-conditioning perhaps because the over-
sampled CE-BEM basis functions are not orthogonal.] As-
suming no a priori models of the BEM coefficients, the two
proposed subblock RLS tracking schemes have similar NCM-
SE and BER performances, and they both outperform the Kal-
man subblock tracking approach we proposed earlier in [1].
Finally, we consider the computational complexity of each

scheme, obtained by simply calculating the CPU time during
the channel estimation process of each simulation program.
The results are displayed in Table 1, all based on themb = 20
case and averaged over 100Monte Carlo runs.
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L=2, fdTs=0.01, d=5, QPSK, 500 Runs.
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Fig. 2. BER vs SNR, under fdTs = 0.01, mb = 20 and 40, with
QPSK information symbols.

CPU Time (s)
Block-wise Estimation [2] 0.026
Subblock-wise Kalman Tracking [1] 0.135
Subblock-wise EW-RLS Tracking 0.128
Subblock-wise SW-RLS Tracking 0.204

Table 1. CPU times (seconds) per run for channel estimation.
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