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ABSTRACT

We address the problem of estimating doubly-selective chan-
nels using pilot clusters that are time-division multiplexed
with the data. Channel estimation is carried out using dif-
ferent basis expansion models (BEMs), and direct MMSE
channel estimation using the channel statistics. For a fixed
number of pilot symbols, we attempt to optimize the power
and placement of the pilot symbols used in transmission, and
the number of BEM coefficients used in channel estimation,
in the sense of minimizing the mean-square estimation error
(MSE) that includes modelling error, which is normally ne-
glected in existing work. Simulation results confirm that for
a wide range of SNR and Doppler spread values, this opti-
mization greatly reduces the MSE and the bit-error rate, and
that modelling error should be taken into account when op-
timizing training. The effects of uncertainty in the channel
statistics are also studied.
Index Terms— Multipath Channels, Time-Varying Chan-

nels, Estimation, Training Design

1. INTRODUCTION

In many packet-based communications systems the discrete
time complex baseband channel is modelled as an FIR fil-
ter, and the channel (filter) coefficients are assumed constant
over the duration of the packet. In cases where the transmit-
ter/receiver are moving with high speed, better modelling can
be achieved by allowing the channel coefficients to randomly
vary with time.

For time-invariant channels, the periodic insertion of pilot
clusters was shown to be optimal [1]. For time-varying chan-
nels and zero-padded block transmission, using the complex
exponential (CE) basis expansion model (BEM), it was shown
in [2] that periodic insertion of zero-guarded pilot symbols
was optimal, in the sense of minimizing the effect of noise.
In [2], the basis exponentials were chosen to be orthogonal
over the length of the block. This BEM has been termed
the critically-sampled (CS)-CE model. In [3] and [4], a non-
critically sampled (NCS)-CE model is used, which achieves
better modelling accuracy by confining all the exponential
frequencies to the range [−f̃max, f̃max], where f̃max is the max-
imum Doppler frequency. In [5], a different BEM, the dis-
crete prolate spheroidal (DPS) sequence model, is used. This
model is also band-limited, and has the advantage that the ba-
sis functions are orthogonal over the length of the block.

In this paper we focus on zero-padded block-based trans-
mission over doubly selective channels. Rather than use the
CS-CE as in [2] we use the NCS-CE approach of [4] and the
DPS approach of [5], as both have better performance. We

also use a BEM based on a truncation of the Karhunen-Loève
(KL) expansion. We compare these BEM-based channel esti-
mates with the direct MMSE estimation of the channel when
the channel statistics are known.

The work in [4] optimizes the pilot power and placement,
but only considers the variance due to the noise, and studies
only frequency-flat channels. Here we consider the total MSE
including channel modelling inaccuracies. The work in [5]
also considers the total channel MSE, but does not carry out
any pilot design optimization. Here we adjust both the power
of the pilot symbols and their position within the packet in
order to achieve the best possible channel estimation perfor-
mance. We also allow the number of basis functions to vary
(providing a tradeoff between the modelling accuracy and the
ability of the receiver to estimate the unknown coefficients).
We find that channel MSE and bit-error rate (BER) can be
significantly reduced.

In addition to this, the case where the channel statistics
are not known exactly is examined, in order to determine how
best to select the training parameters in this case. Further,
the case where the channel statistics are known exactly by the
receiver but known roughly by the transmitter is considered.
Notation: x, x, and X indicate a scalar, vector, and ma-

trix respectively. Superscripts H and T denote Hermitian and
transpose operators. X† is the pseudo-inverse of X. IN is
the (N ×N) identity matrix. �(x) denotes the real part of x.
E [x] is the expected value of the variable x. Finally diag (x)
is a square, diagonal matrix whose diagonal is the vector x,
and tr {.} denotes the trace operator.

2. SYSTEMMODEL

The discrete-time baseband received signal for a doubly se-
lective channel is:

y [n] =

Nt−1∑
�=0

h� [n] s [n − �] + v [n] , n = 0, 1, . . . (1)

where h� [n] is the channel response to an impulse input at
time n− �, s [n] is the input, and v [n] is an AWGN with vari-
ance σ2

v . The sequences h� [n] are assumed to be independent
stationary Gaussian processes, with autocorrelation function
(ACF) E

[
h� [n] h∗

j [m]
]

= δ(� − j)σ2
� [Rhh](n,m). Nt is the

length of the channel, and values of h� [n] for � ≥ Nt are
assumed to be zero. The (normalized) Doppler-spread of the
channel is also limited to the interval [−fmax, fmax]. The in-
put, s [n], is made by multiplexing pilot and data symbols,
denoted by p [n] and d [n] respectively. The pilot symbols are
known to the receiver, and the data symbols are drawn from a
finite alphabet.
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For block transmission with packet length N the received
signal is

y = Hs + w, (2)

where s and w are (N × 1), and the (N ×N) channel matrix
H is lower-triangular with only the first Nt diagonals non-
zero, corresponding to the length of the channel. The sys-
tem uses zero-padded block transmission, in order to guard
against inter-block interference.

As in [2], we will use pilot clusters where each cluster
consists of a positive real symbol (called a pilot symbol) and
Nt − 1 zeros (pilot zeros) padded on each side. In [6] this is
referred to as a time-domain Kronecker delta (TDKD) pilot
structure, which was shown to be optimal in terms of MMSE
channel estimation for the CS-CE-BEM. This pilot structure
decouples channel estimation and data detection, and this means
that data recovery will be a sequential process. We will choose
to end the packet with a pilot cluster, as in [2], so that the
final Nt − 1 symbols of the packet will be pilot zeros to re-
move any inter-packet-interference. A packet will contain Np

pilot symbols, described by a placement vector, P , indicating
which of the input symbols is a pilot symbol, and a power vec-
tor, γ =

[
γ0, γ1, . . . , γNp−1

]
, i.e: p [P [i]] =

√
γ [i], i ∈

0 . . . Np − 1. The placement vector will be ordered such that
P [0] < . . . < P [Np − 1] and the power vector must be non-
negative. We also make the assumption that the total power
available for the pilot symbols is fixed. By fixing the number
of pilot symbols, we fix the maximum amount of data-rate
loss due to training, and the number of non-zero data symbols
will then be Nd = N − (2Nt − 1)Np.

3. CHANNEL ESTIMATION

This section outlines two different methods of channel esti-
mation, and the performance of each.

3.1. BEM Approach

The purpose of using a basis expansion model is to approxi-
mate each channel tap as the weighted sum of just a few ‘basis
functions’, uk [n]. The channel at the �th tap, h� [n], is mod-
elled using Nf basis coefficients, w�,k, i.e.

h� [n] ≈

Nf−1∑
k=0

w�,kuk [n − �] (3)

Using this method only NfNt values need to be estimated.
Let h� = [h� [�] , . . . , h� [N − 1 + �]]

T be the channel
vector for the �th tap, since the values of h� [n] for n < �
are irrelevant in our zero-padded system, and define the kth

basis function as uk = [uk [0] , . . . , uk [N − 1]]
T .

In the CS-CE model [2] uk [n] = ej2πkn/N , for k ∈
{−(Nf − 1)/2, . . . , (Nf − 1)/2} (for odd Nf ) and therefore
the sequences are orthogonal over [0, . . . , N − 1]. However,
if the frequency response of the channel is limited to ±fmax
then better channel modeling can be achieved by having all
the exponentials lie within these limits. For that reason for
the NCS-CE model uk [n] = e

j2πfmax 2k
Nf −1

n is used.
For the DPS model, the basis functions, uk, are the Nf

most significant eigenvectors of a kernel matrix, as defined in
[5]. The DPS model does not make use of the frequency re-
sponse of the channel taps, only the Doppler spread is used.

Another BEM is obtained by selecting the Nf most signif-
icant eigenvectors of the ACF, Rhh, (which requires prior
knowledge of the channel statistics), and we have called this
the KL-BEM.

Under the condition that all pilot symbols have Nt − 1
leading and trailing pilot zeros, the task of estimating the
channel is simplified into that of estimating Nt non-frequency
selective channels (see [2]). Defining U =

[
u0, . . . ,uNf−1

]
and w� =

[
w(�,0), . . . , w(�,Nf−1)

]T , the channel vectors can
be written as h� ≈ Uw�. The received signal can be writ-
ten y =

∑Nt−1
�=0 S�h� + v ≈

∑Nt−1
�=0 S�Uw� + v where

S� is obtained by vertically shifting down diag (s) by � rows.
For block transmission the maximum time index is N − 1,
whereas h� is defined for time indices larger than this. How-
ever by defining S� as above, which exploits the pilot zeros at
the end of the packet, this problem can be ignored.

If the superscript P (D) indicates taking only the rows re-
lating to the indices of the pilot (data) symbols, and Γ =
diag (γ), then the received values associated with the pilot
symbols through the �th tap are:

yP+� ≈ SP+�
� UPw� + vP+� = Γ

1

2 UPw� + vP+� (4)

The least-squares estimate of w� is:

ŵ� = (Γ
1

2 UP)†yP+� (5)

and from (5) the channel for the data symbols through the �th

tap is estimated as

ĥD
� = UD(Γ

1

2 UP)†yP+� (6)

If σ2
�Rhh is the N × N autocorrelation matrix of the �th

channel tap, and if RhPhD means taking the rows relating to
P and the columns relating to D, then the MSE, averaged over
the data, can be simplified to:

MSEĥ =
1

Nd
tr

{
ΦRhPhPΦH + RhDhD

−2�(ΦRhPhD ) + NtΨσ2
v

}
(7)

where Φ = UD(UPHΓUP)−1UPHΓ,

Ψ = UD(UPHΓUP)−1UDH ,

Without loss of generality the average total channel energy
has been fixed to unity. Eq. (7) is valid for any basis functions
which can be written in the form of (3), and for any channel
autocorrelation function. If only noise is considered the MSE
is given by the last term of in RHS of (7).

3.2. MMSE Approach

To avoid the modelling errors of the BEM-based methods, the
MMSE estimate of h� can be obtained directly as:

h̃D
� = RhDhP

(
RhPhP + Γ−1 σ2

v

σ2
�

)−1

Γ− 1

2 yP+� (8)

Whilst this would be expected to outperform BEM method, it
requires more knowledge about the channel, and it has higher
complexity. The MSE of the direct MMSE estimate in (8) is
given by:

MSEh̃ =
1

Nd

Nt−1∑
�=0

σ2
� tr {RhDhD − RhDhP (RhPhP

+ Γ−1σ2
v/σ2

� )−1RhPhD

}
(9)

2854



4. TRAINING DESIGN

We place the pilot power and placement vectors under the
constraints:
(C1)

∑
i γi = Np

(C2) 0 ≤ γi ≤ Np

(C3) P [Np − 1] = N − Nt, i.e. the packet ends with a pilot
symbol followed by Nt − 1 zeros.
(C4) P [i − 1] + 2(Nt − 1) < P [i] < P [i + 1]− 2(Nt − 1),
i.e. pilot symbols are also separated by pilot zeros.

The average pilot symbol power is set to unity (due to
(C1)) without loss of generality.

The problem of joint optimization can be written as

{Nf ,γ,P} = arg min
Nf ,γ,P

MSE (10)

where MSE is the value computed in (7) or (9). Prior to opti-
mization Nf is chosen according to (as in [2], [5]):

Nf = 2 �fmaxN� + 1, (11)

In the optimization we allow the number of basis functions,
Nf , used to approximate the channel to vary from 1, . . . , Np.

In the case where Nf = Np, the joint optimization of
(7) can be simplified by noting that the matrix UP is square,
and in this case the MSE can be simplified, since in (7) Φ is
no longer a function of γ. The power vector can be solved
analytically to give

γi =
Np

√
[A]i,i∑Np

j=1

√
[A]j,j

(12)

where A = (UP)−HUDHUD(UP)−1

When 1 ≤ Nf < Np the MSE expression in (7) cannot be
simplified. In this case, and for the MMSE method, a gradient
descent method can be used in place of (12) (making sure
that (C1) and (C2) are not broken). This cannot guarantee a
global minimum since (7) has not been shown to be convex
with respect to P when Nf < Np.

Our simulations used a brute-force method to find the op-
timal value of P out of all the placement vectors satisfying
(C3) and (C4). The complexity of doing so is high however,
and may be prohibitive for very large values of N . For com-
parison we also test the case where (Nf ,P) and γ are op-
timized iteratively, and where the search over P is not done
exhaustively. One method along these lines was presented in
[3], however here we have chosen to update P [i] by testing
the MSE of Pnew [i] = Pold [i] ± 1, i ∈ 0, . . . , Np − 1 and
keeping changes where the MSE is reduced. Further we fixed
P [0] = Nt−1. For the parameters used for the simulations in
Section 6 the number of pilot positions considered is around
1/1000th of the total possible, and as the pilot power is only
optimized for very few of these cases the total complexity was
smaller still.

5. CHANNEL STATISTICS MISMATCH

The channel MSE value in (7) can still be used, by noting that
P and γ are functions of the transmitter’s estimates of the
channel parameters, U (itself a function of fmax and Nf ) is a
function of the receiver’s estimates of the channel parameters,
and Rhh is the true channel ACF.

The channel MSE value given in (9) must be replaced by:

MSEh̃ =
1

Nd

Nt−1∑
�=0

σ2
� tr

{
Ξ�RhPhPΞH

� + RhDhD

−2�(Ξ�RhPhD ) + Ξ�Γ
−1ΞH

� σ2
v/σ2

�

}
(13)

where Ξ� = R̄hDhP

(
R̄hPhP + Γ−1σ2

v/σ2
�

)−1

and where R̄hh is the receiver’s estimate of the channel ACF.

6. SIMULATION RESULTS

For all our simulations the channel autocorrelation function is
assumed to be given by the widely accepted Jakes’ model:

Rh�
(τ) = σ2

� J0 (2πfmaxτ) , τ = 0,±1, . . . (14)

where J0(.) is a zeroth order Bessel function. The channel
taps follow an exponential delay profile, σ2

� ∝ e−α� where we
have set α = 0.2. The SNR (for a unit energy channel) has
been defined as the average power of the pilot clusters divided
by the noise power, i.e. SNR = 1/((2Nt − 1)σ2

v). For the
training optimization simulations the system parameters were
N = 100, Nt = 4, and Np = 4. The BER was tested for
a QPSK constellation over 20000 trials, using ML detection,
where the instantaneous data power was equal to the average
power of the pilot clusters (not necessarily the optimum ratio).

Fig 1 shows the results of different levels of optimization
for the DPS-BEM. For comparison Fig 1 also shows the case
where optimization only uses the noise (i.e. modelling error
is not considered), and also the low complexity suboptimal
case from Section 4. In the case where Nf is unoptimized the
value is calculated using (11), giving Nf = 3. From this we
see that optimizing the power provides little improvement to
the MSE, indeed the difference between the joint optimization
of (Nf ,P) and (Nf ,P,γ) is negligible. However this does
not mean that the values of P are the same, or even similar,
as we will discuss later. Furthermore it is essential, especially
at high SNR, to optimize Nf , rather than use (11). The low-
complexity approximation performs very well, which would
be useful when optimizing the parameters for larger values of
N and Np. Finally, the performance where only noise is con-
sidered in optimization is far worse than the optimal solution.
It is also worse than the case where only (P,γ) are optimized,
but using the modelling error in addition to the noise.

Comparing the performance of the different channel es-
timation methods (not shown due to space), we found that
although the difference in performance is large prior to opti-
mization, afterwards the difference is small. As expected the
direct MMSE method has the lowest MSE at all SNR values,
the KL-BEM very slightly outperforms the DPS-BEM, and
the NCS-CE-BEM has the highest MSE.

Fig 2 shows the training parameters for the DPS-BEM af-
ter optimization. It is interesting to note that not all of the
pilot blocks are used, i.e. some of the pilot values are set to
zero. If those pilots which are set to zero are at the start/end
of the packet, then they can essentially be ignored, and in this
case it would improve the data rate by up to 16%. This is a
large benefit of optimizing the pilot power, even though the
MSE performance is roughly the same.

Figure 3 shows the performance when tx/rx mismatched
fmax. Figure 4 shows the performance when only the transmit-
ter has mismatched fmax. When fmax is overestimated at the
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transmitter, but known at the receiver, the channel can still be
estimated with almost optimal MSE, but when fmax is under-
estimated the receiver cannot rectify this. This is due to the
fact that some of the pilot symbols have zero magnitude (see
Fig 2), and they are not well-spread, and therefore should the
receiver tries to choose a value of Nf larger than the trans-
mitter anticipates the equation may be badly-scaled or under-
determined. This would suggest that where the transmitter
does not have accurate knowledge of the channel statistics it
selects γ and P with value of Nf which is larger than opti-
mal. With mismatched SNR (not shown due to space), as with
fmax, the BEMs are very resilient provided Nf is not chosen
to be too small. The direct MMSE estimate is more sensitive,
and requires a good estimate of σ2

v .
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Fig. 1. The performance using the DPS-BEM estimate with
different parameters optimized (fmax = 0.01).
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Fig. 2. The channel training parameters after optimization,
for DPS-BEM (SNR = 15)
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Fig. 3. The performance of different estimates with freq. mis-
match at tx/rx (fmax = 0.005, SNR=15dB)

1 2 3 4 5 6 7 8 9 10
x 10−3

10−2

10−1

100

M
SE

fmax (assumed)

NCSCE*
DPS*
KL*
MMSE*

Fig. 4. The performance of different estimates with freq. mis-
match at tx (fmax = 0.005, SNR=15dB)

7. CONCLUSIONS

When using BEMs for time varying channels we have shown
how important it is to properly set the power and placement
of the pilot symbols in the packet. The channel MSE perfor-
mance can be improved significantly by optimizing the sys-
tem parameters, and this could lead to several benefits, such
as improved BER (as we have shown) or a reduction in re-
quired transmitter power.

Taking into account modelling error in training design
provides significant MSE/BER improvement compared to train-
ing design based on minimizing the noise effects only.

In terms of channel statistics mismatch the results suggest
that when allocating pilot power and placement the transmit-
ter should select a higher value of Nf than optimal, in order to
give the receiver the flexibility to compensate for the transmit-
ter’s lack of channel knowledge. When the channel statistics
are varying slowly the receiver will not have to waste much
bandwidth sending information about the channel back to the
transmitter. The receiver still requires a good estimate of fmax.

The KL-BEM performs similarly to the DPS-BEM, with
and without channel statistics mismatch, and so either could
be used, however when the receiver has good knowledge of
the channel statistics the direct MMSE estimation provides
better MSE performance.
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