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ABSTRACT

Accurate and sparse representation of a moderately fast fading chan-
nel using bases functions is achievable when both channel and bases
bands align. If a mismatch exists, usually a larger number of bases
functions is needed to achieve the same accuracy. In this paper, we
propose a novel approach for channel estimation based on frames,
which preserves sparsity and improves estimation accuracy. Mem-
bers of the frame are formed by modulating and varying the band-
width of discrete prolate spheroidal sequences (DPSS) in order to
reflect various scattering scenarios. To achieve the sparsity of the
proposed representation, a matching pursuit approach is employed.
The estimation accuracy of the scheme is evaluated and compared
with the accuracy of a Slepian basis expansion estimator based on
DPSS for a variety of mobile channel parameters. The results clearly
indicate that for the same number of atoms, a significantly higher
estimation accuracy is achievable with the proposed scheme when
compared to the DPSS estimator.

Index Terms— Time-varying channels, channel estimation, dis-
crete prolate spheroidal sequences, frames.

1. INTRODUCTION

Estimation and interpolation of a moderately fast fading Rayleigh/Rice
channel is an important problem in modern communications. If the
channel characteristics are known, i.e. the channel autocorrelation
function, then an approach based on the Wiener filter provides the
optimum solution [1]. However, such an ideal case is rare in real-life
applications, and we require a more universal approach. In general,
basis expansions are used in such situations and several different ba-
sis functions including Fourier bases and discrete prolate spheroidal
sequences (DPSS) have been adopted for such problems [2]-[5]. Pre-
vious studies have found that accurate and sparse representations are
usually obtained when both the bases and the channel under inves-
tigation occupy the same band [2]. However, when the bandwidth
of the basis function is mismatched and larger than that of the sig-
nal, a larger number of bases is required to approximate the chan-
nel with the same accuracy. To resolve this particular problem, it
was suggested to use a bank of bases with different bandwidths [6].
However, such a representation again ignores the fact that in some
cases the band occupied by the channel is not necessarily centered
around DC, but rather at some frequency different from zero. Hence,
a larger number of bases is again needed for accurate and sparse rep-
resentation.

A need clearly exists for some type of overcomplete, redun-
dant bases which accounts for a variety of scenarios. Therefore, in
this paper we propose an overcomplete set of bases called Modu-
lated Discrete Prolate Spheroidal Sequences (MDPSS). Such a set
of bases is also known as a frame [7], [8]. The bases within the
frame are obtained by modulation and variation of the bandwidth of
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DPSSs in such a way as to reflect various scattering scenarios. Dur-
ing construction of multiple bases it is assumed that at least an upper
bound of the maximum Doppler frequency is known. Furthermore,
in order to obtain a sparse representation of the channel using the
MDPSS frame, a matching pursuit approach is employed [9]. The
proposed scheme is tested using the channel model presented in Sec-
tion 2 for various scattering scenarios. The results demonstrate that
the MDPSS frame provides superior estimation accuracy compared
to a Slepian basis expansion DPSS approach [2].

This paper is organized as follows. In Section 2, relevant proper-
ties of a mobile channel are reviewed. Details of the MDPSS frame
and its implementation are covered in Section 3. Numerical study of
the proposed scheme and the results of this analysis are covered in
Section 4. Conclusions are drawn in Section 5.

2. PROPERTIES OF THE SPECTRUM OF A MOBILE
CHANNEL

The covariance function, p(7), of a SISO frequency flat mobile com-
munication channel and its associated power spectral density S(w)
are related to the distribution of angle of arrival (AoA) p(0) as [10]

p(t)=P . exp (j2m fpT cos6) p(0)do, ))

-

S(f) = ﬁp (arccos f%)

P f
+ Wp (71’ — arccos f—D) . 2)

Here, P is the total power of the received signal, fp = fov/cis the
maximum Doppler shift of the carrier frequency fo corresponding to
the velocity v of the mobile; c is the speed of light. Jakes spectrum,

Pfp
/1= (f/fp)?

which is a widely used model by communication researchers, cor-
responds to the uniform distribution p(f) = 1/27 of the AoA [10].
This spectrum closely resembles a uniform spectrum for most of the
frequencies, and therefore, its Karhunen-Loeve basis [1] is close to
the one defined by sinc type covariance function. Thus, it seems nat-
ural that representation in terms of DPSS suggested in [2] produces
very good results.

However, real-world measurements reveal that the AoA can de-
viate significantly from that of a uniform distribution on [—7 : 7].
Often, the received signal is represented well as a sum of signals

S(f) = 3
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arriving from a narrow band of angles, corresponding to individual
clusters [11], [12]. In this case, the PSD of the received signal could
be well approximated by a piece-constant distribution of power in
frequency domain. Conversely, the covariance function could be
well represented by a sum of sinc type functions in the time do-
main [12]. In addition, in some radio environments such as dense
urban environments [13], the received signal could be dominated by
multiple specular components, therefore creating a mixed spectrum
of the received signal. In these conditions, the use of simple DPSS
may not be optimal, since proper expansions will require a signif-
icant number of higher order DPSS with small eigenvalues which,
in turn will result in ill-posed problem. Therefore, modifications to
Zemen’s approach in [2] are required.

3. FRAMES BASED ON DPSS

Throughout this section and the rest of the paper, it is assumed that
only N discrete samples of the channel are available and that they
were obtained with a sampling period 7. Hence, the discrete fre-
quency, v, represents a continuous frequency, f, normalized with
sampling period, v = f7T.

3.1. Discrete Prolate Spheroidal Sequences

Given N, the kth DPSS, v (n, N,W), for k = 0,1,...,N — 1 is
defined as the real solution to the system of equations [14]:

N-1 .
o SnR2Wn =)l ) N WY = AN, W) (, N, )
— m(n —m)
)
with A; (N, W) being the ordered non-zero eigenvalues of (4)
Ao(N, W) > A (N, W), .., Anv—1(N, W) > 0. ®)

The first 2N W eigenvalues are very close to 1 while the rest rapidly
decay to zero [14]. Interestingly enough, it has been observed that
these quantities are also the eigenvalues of an N x N matrix C'(m, n)
[14], where the elements of such a matrix are

sin[27W (n — m)]

Clm,n) = w(n —m)

and the vector obtained by time-limiting the DPSS, vy (n, N, W), is
an eigenvector of C(m, n). The DPSS are doubly orthogonal, that is,
they are orthogonal on the infinite set { —oo, ..., 0o} and orthonormal

on the finite set {0, 1, ..., N — 1}, that is,
Z Vi (n, ]\77 W)vj (n, N, W) :)\15” (7)
N-1
Z Vi (nv N, W)?)]' (n, N, W) =dij, (3
n=0

where ¢, =0,1,..., N — 1.

3.2. Modulated Discrete Prolate Spheroidal Sequences

If the DPSS are used for channel estimation, then usually accurate
and sparse representations are obtained when both the DPSS and the
channel under investigation occupy the same frequency band [2].
However, problems arise when the channel is centered around some
frequency |v,| > 0 and the occupied bandwidth is smaller than 2,
as shown in Fig. 1.
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Fig. 1. Comparison of the bandwidth for a DPSS (solid line) and
a channel (dashed line): (a) both have a wide bandwidth; (b) both
have narrow bandwidth; (c) a DPSS has a wide bandwidth, while the
channel’s bandwidth is narrow and centered around v, > 0; (d) both
have narrow bandwidth, but centered at different frequencies.

In such situations, a larger number of DPSS is required to ap-
proximate the channel with the same accuracy despite the fact that
such narrowband channel is more predictable than a wider band
channel [15]. In order to find a better basis we consider so-called
Modulated Discrete Prolate Spheroidal Sequences (MDPSS), defined
as

My (N, W, wm;n) = exp(jwmn)v(N, W;n), )

where w,, = 27, is the modulating frequency. It is easy to see
that MDPSS are also doubly orthogonal, obey the same equation (4)
and are bandlimited to the frequency band [-W + v : W + v].

The next question which needs to be answered is how to properly
choose the modulation frequency v. In the simplest case when the
spectrum S(v) of the channel is confined to a known band [v1; v2],
ie.

S(w) = { f(;) Vv € [v1,v2] and 11| < |v2] (10)

elsewhere

the modulating frequency, v,,, and the bandwidth of the DPSSs are
naturally defined by

Ui :M (11
2
W:‘”Q_”l}, (12)
2
as long as both satisfy:
1
|1/m|+W<§. (13)

In practical applications the exact frequency band is known only
with a certain degree of accuracy. In addition, especially in mobile
applications, the channel is evolving in time. Therefore, only some
relatively wide frequency band defined by the velocity of the mobile
and the carrier frequency is expected to be known. In such situations,
a one-band-fits-all approach may not produce a sparse and accurate
approximation of the channel. To resolve this problem, it was pre-
viously suggested to use a band of bases with different widths to
account for different speeds of the mobile [6]. However, such a rep-
resentation once again ignores the fact that the actual channel band-
width 2W could be much less than 2vp dictated by the maximum
normalized Doppler frequency vp = fpT.

To improve the estimator robustness, we suggest the use of mul-
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tiple bases, better known as frames [8], precomputed in such a way
as to reflect various scattering scenarios. In order to construct such
multiple bases, we assume that a certain estimate (or rather its up-
per bound) of the maximum Doppler frequency vp is available. The
first few bases in the frame are obtained using traditional DPSS with
bandwidth 2vp. Additional bases can be constructed by partitioning
the band [—vp;vp] into K subbands with the boundaries of each
subband given by [vg; vk+1], where 0 < k < K — 1, vgp41 > v,

and vp = —vp, Vk_1 = vp. Hence, each set of MDPSS has a
bandwidth equal to v;+1 — v and a modulation frequency equal to
Vm = 0.5(vk + vikt1). Obviously, a set of such functions again

forms a basis of functions limited to the bandwidth [—vp;vp]. It
is a convention in the signal processing community to call each ba-
sis function an atom. While particular partition is arbitrary for ev-
ery level K > 1, we can chose to partition the bandwidth in equal
blocks to reduce the amount of stored precomputed DPSS, or to par-
tition according to the angular resolution of the receive antenna, efc,
as shown in Fig. 2.
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Fig. 2. Sample partition of the bandwidth for K = 4.

Representation in the overcomplete basis can be made sparse
due to the richness of such a basis. Since the expansion into sim-
ple bases is not unique, a fast, convenient and unique projection al-
gorithm cannot be used. Fortunately, efficient algorithms, known
generically as pursuits [7], [9], can be used and they are briefly de-
scribed in the next section.

3.3. Matching Pursuit with MDPSS frames

From the few approaches which can be applied for expansion in
overcomplete bases, we choose the so-called matching pursuit [9].
The main feature of the algorithm is that when stopped after a few
steps, it yields an approximation using only a few atoms [9]. The
matching pursuit was originally introduced in the signal processing
community as an algorithm that decomposes any signal into a linear
expansion of waveforms that are selected from a redundant dictio-
nary of functions [9]. It is a general, greedy, sparse function ap-
proximation scheme based on minimizing the squared error, which
iteratively adds new functions (i.e. basis functions) to the linear ex-
pansion. In comparison to a basis pursuit, it significantly reduces the
computational complexity, since the basis pursuit minimizes a global
cost function over all bases present in the dictionary [9]. If the dic-
tionary is orthogonal, the method works perfectly. Also, to achieve
compact representation of the signal, it is necessary that the atoms
are representative of the signal behaviour and that the appropriate
atoms from the dictionary are chosen.

The algorithm for the matching pursuit starts with an initial ap-
proximation for the signal, Z, and the residual, R:

729 =0 (14)
RO =z (15)
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and it builds up a sequence of sparse approximation stepwise by try-
ing to reduce the norm of the residue, R = Z — x. At stage k, it
identifies the dictionary atom that best correlates with the residual
and then adds to the current approximation a scalar multiple of that
atom, such that

2™ =25 4 ey (16)
R® =z — 3™ (7

where a, = (R*~Y ¢1.)/ ||ox||*. The process continues until the
norm of the residual R does not exceed required margin of error
e > 0: ||IR™|| < ¢ [9]. In our approach, a stopping rule man-
dates that the number of bases, x g, needed for signal approximation
should satisfy xpg < [2Nvp] + 1. Hence, a matching pursuit ap-
proximates the signal using x g bases as

XB

T = (T, ¢n)pn + RXP), (18)

n=1

where ¢,, are xp bases from the dictionary with the strongest con-
tributions.

4. NUMERICAL SIMULATION

In this section, the performance of the MDPSS estimator is com-
pared with the Slepian basis expansion DPPS approach [2] for a cer-
tain radio environment. The channel model used in the simulations
is presented in Section 2 and it is simulated using the AR approach
suggested in [16]. The parameters of the simulated system are the
same as in [2]: the carrier frequency is 2 GHz, the symbol rate used
is 48600 1/s, the speed of the user is 102.5 km/h, 10 pilots per data
block are used, and the data block length is M = 256. The number
of DPSSs used in estimation is given by [2Mvp]| + 1. The same
number of bases is used for MDPSS, while K = 15 subbands is
used in generation of MDPSS.
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Fig. 3. Mean square error per symbol for MDPSS (solid) and DPSS
(dashed) mobile channel estimators for the noise-free case.

As an introductory example, consider the estimation accuracy
for the WSSUS channel with a uniform power angle profile (PAS)
with central AoA ¢o = 5 degrees and spread A = 20 degrees.
We used 1000 channel realizations and Fig. 3 depicts the results for
the considered channel model. The mean square errors (MSE) for
both MDPSS and DPSS estimators have the highest values at the



edges of the data block. However, the MSE for MDPSS estimator
is several orders of magnitude lower than the value for the Slepian
basis expansion estimator based on DPSS.

Next, let’s examine the estimation accuracy for the WSSUS chan-
nels with uniform PAS, central AoAs ¢1 = 45 and ¢1 = 75, and
spread 0 < A < 27/3. Furthermore, it is assumed that the channel
is noisy. Figs. 4 and 5 depict the results for SNR = 10 dB and
SN R = 20 dB, respectively.

10°

MSE

—— MDPSS for AcA =45

— — — DPSS for AcA = 45
—— MDPSS for for AoA = 75
— © — DPSS for for AcA =75

-3 I I I I I
20 40 60 80 100 120
Spreading angle (degrees)

Fig. 4. Dependence of the MSE on the angular spread A and the
mean angle of arrival for SNR = 10 dB.
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Fig. 5. Dependence of the MSE on the angular spread A and the
mean angle of arrival for SN R = 20 dB.

The results clearly indicate that the MDPSS frames are a more
accurate estimation tool for the assumed channel model. For the con-
sidered angles of arrival and spreading angles, the MDPSS estimator
consistently provided lower MSE in comparison to the Slepian basis
expansion estimator based on DPSS. The advantage of the MDPSS
stems from the fact that these bases are able to describe different
scattering scenarios.

5. CONCLUSIONS

In this paper, MDPSS frames are proposed for estimation of fast
fading channels in order to preserve sparsity of the representation
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and enhance the estimation accuracy. The members of the frame
were obtained by modulation and bandwidth variation of DPSSs in
order to reflect various scattering scenarios. The matching pursuit
approach was used to achieve a sparse representation of the channel.
The proposed scheme was tested for various mobile channels, and
its performance was compared with the Slepian basis expansion es-
timator based on DPSS. The results showed that the MDPSS method
provides more accurate estimation than the DPSS scheme.
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