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ABSTRACT

We propose a tree-search based Bayesian approach to blind

maximum likelihood sequence detection (MLSD) of convo-

lutionally encoded data transmitted over a multipath Rayleigh

fading channel. In deriving the path metric for searching the

channel-code tree, the proposed algorithm incorporates a for-

getting factor matched to the time variation of the channel to

generate accurate estimates of the correlation across the trans-

mitted and received data. In addition, an augmented metric is

presented to address the challenge of unknown channel or-

der in time-varying systems. Simulation results show that the

proposed algorithm can achieve significant improvement in

bit error rate over competing schemes, even when channel or-

der information is unavailable at the receiver.

Index Terms— Maximum likelihood detection, equaliz-

ers, time-varying channels, multipath channels

1. INTRODUCTION

As the need for higher bandwidth and greater mobility in-

creases, detecting data transmitted over time-varying chan-

nels is a significant challenge in modern telecommunication

systems. The intersymbol interference (ISI) caused by multi-

path propagation, filtering, and bandwidth limitation degrades

the performance of such systems. Traditionally, ISI is com-

batted through channel estimation using training sequences,

but training wastes valuable bandwidth. Additionally, the chan-

nel may vary during the transmission of a single packet, in

which case training-based techniques are not applicable.

A variety of approaches for joint channel and data esti-

mation have been explored in previous research, e.g. [1, 2].

In contrast, we propose a technique for sequential detection

of transmitted data without explicit channel estimation. Our

approach builds on the tree-based Bayesian maximum like-

lihood sequence detector (BMLSD), which was presented in

[3] for time-invariant channels. We consider its development

for time-varying complex multipath Rayleigh fading channels

and employ a forgetting factor whose value is optimized to
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match the rate of change of the channel. We also address the

challenge of detection under channel order uncertainty.

2. SYSTEM MODEL

The system model under consideration is shown in Figure 1.

Information bits are encoded using a rate R = 1
r convolu-

tional encoder prior to transmission over the channel. The

information bits are transmitted in blocks of length N, de-

noted by bN
1 , yielding blocks of coded bits of length rN ,

denoted by xrN
1 , at the output of the encoder. The encoded

bits are transmitted over a linear time-varying (LTV) complex

channel ht = hc
t + jhs

t with additive white Gaussian noise

(AWGN) wt = wc
t + jws

t , where wc
t and ws

t are uncorrelated

white Gaussian noise processes with variance σ2 = N0/2.

For simplicity, we consider transmission of binary phase shift

keying (BPSK) encoded data. The effect of the channel can

be modeled as

zn = zc
n + jzs

n =

[
L−1∑
k=0

ht,kxt−kTs + wt

]
t=nTs

(1)

=

[
L−1∑
k=0

hc
t,kxt−kTs

+ wc
t

]
t=nTs

+j

[
L−1∑
k=0

hs
t,kxt−kTs

+ ws
t

]
t=nTs

,

where zn denotes the nth sample of the channel output, Ts is

the sampling time period at the receiver, and ht,k is the kth

tap of the length-L channel vector ht = [ht,0 · · ·ht,L−1] at

time t.
Following Jakes’ model for a Rayleigh fading channel,

each channel tap is comprised of Q propagation paths as

ht,l = hc
t,l + jhs

t,l (2)

= E0

Q∑
q=1

Cq,l exp(j(ωdt cos αq + φq)),

where E0 is a scaling constant, Cq,l, αq, and φq are the ran-

dom path gain, angle of incoming wave, and initial phase as-

sociated with the qth propagation path, respectively, and ωd
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Fig. 1. System model for the proposed blind detector. Infor-

mation bits are passed through a convolutional encoder, trans-

mitted over a linear time-varying channel with unknown taps,

and processed by a stack-based detection and decoding block.

is the maximum radian Doppler frequency [4]. The channel

autocorrelation is given by

E[hc
t,lh

c
t+τ,l] = E[hs

t,lh
s
t+τ,l] = J0(ωdτ) (3)

E[hc
t,lh

s
t+τ,l] = E[hs

t,lh
c
t+τ,l] = 0,

where J0(.) denotes the zero-order Bessel function of the first

kind [4].

Each block of received samples zrN
1 = zc,rN

1 + jzs,rN
1

serves as input to the detection and decoding block, which

uses a stack-based algorithm to estimate the data sequence

bN
1 by navigating the tree generated by the combined code

and channel. We assume that the receiver has knowledge of

the error-control code used at the transmitter, the variance of

the AWGN, and the initial state of the encoder.

3. METRIC DERIVATION FOR TIME-VARYING
CHANNELS

In the presence of channel information at the receiver, ML se-

quence detection can be performed efficiently via the Viterbi

Algorithm. When the channel response is unknown, the like-

lihood no longer factors onto a trellis, and hence the Viterbi

Algorithm cannot be directly applied. Instead, we employ a

Bayesian detector that traverses a tree to find the most likely

transmitted sequence. At each stage of the tree search algo-

rithm, the BMLSD extends a path within the stack and com-

putes the likelihood metric for the bit sequence associated

with each extended path. The proposed Bayesian approach

assumes a prior over the channel taps, and the conditional

likelihood of a bit sequence bn
1 is averaged over the unknown

quantities:

p(bn
1 |zrN

1 , C) (4)

=
∫

ht

p(bn
1 , hc

t , hs
t |zc,rN

1 zs,rN
1 , C)dht

=
∫

hc

t

p(bn
1 , hc

t |zc,rN
1 , C)dhc

t

∫
hs

t

p(bn
1 , hs

t |zs,rN
1 , C)dhs

t ,

where C denotes the explored tree at the current iteration. Be-

cause the real and imaginary parts of the complex channel

are uncorrelated under Jakes’ model, we can write the overall

likelihood as the product of the metrics for each component.

If the channel taps are assumed to be drawn from a zero-

mean Gaussian prior with an identity covariance matrix, the

metric for a real time-invariant channel can be written as∫
hc

p(bn
1 , hc|zrN

1 , C)dhc (5)

∝ P (bn
1 )

∫
hc

p(zrN
1 |bn

1 , hc, C)p(hc)dhc

≈ σL
hc

2n

(
(σ2 + 1)

r(n−N)
2

σrn

)∣∣∣∣Rrn
xx

σ2
+

I

σ2
h

∣∣∣∣
−1/2

×

exp

{
−Rrn

zczc [0]
2σ2

+
1

2σ4
rrnT
zcx

(
Rrn

xx

σ2
+

I

σ2
h

)−1

rrn
zcx

}
×

exp

{
− 1

2(σ2 + 1)

rN∑
i=rn+1

zc
i
2

}
,

where Rk
zczc [0] =

∑k
i=1 zc2

i , rk
zcx =

∑k
i=1 zc

i xi
i−L+1, and

Rk
xx =

∑k
i=1(x

i
i−L+1)(xi

i−L+1)
T [3]. The metric for the

imaginary component can be computed similarly.

When the channel response varies with time, equation (5)

is no longer valid, since the ensemble estimates of Rzczc , rzcx

and Rxx are not equal to time average estimates due to non-

stationarity. In order to allow for a time-varying channel, we

incorporate a forgetting factor λ that allows the estimates of

Rzczc , rzcx and Rxx to vary with the channel:

R̂k
zczc [0] =

1 − λ

1 − λk+1

k∑
i=1

λk−izc2
i (6)

r̂k
zcx =

1 − λ

1 − λk+1

k∑
i=1

λk−izc
i xi

i−L+1

R̂k
xx =

1 − λ

1 − λk+1

k∑
i=1

λk−i
(
xi

i−L+1

) (
xi

i−L+1

)T
,

where (1−λ)/(1−λk+1) is a scaling factor over k iterations.

3.1. Choosing the Forgetting Factor

To generate reliable estimates of the auto-correlations and

cross-correlations that appear in the path metric, it is natural

to choose a value for λ that reflects the rate at which the chan-

nel is changing with time. Note that the first exponential term

(fourth line) in (5) is equivalent to the squared difference be-

tween the true channel output and the estimated output when

a least squares estimate of the channel is employed. Hence,

viewing the Bayesian detector as performing implicit channel

tracking, we can define the mean square error (MSE) of the

estimated channel output as

ε = R̂rn
zczc [0] − 1

2σ2
r̂rnT
zcx

(
R̂rn

xx

σ2
+

I

σ2
h

)−1

r̂rn
zcx. (7)
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When the channel is perfectly known, the MSE is equal

to the noise variance, σ2. When the channel is both unknown

and time varying, however, additional MSE is introduced via

estimation and lag error through the auto- and cross- correla-

tion expressions. Our goal is to choose λ such that the total

MSE is minimized for the time-varying channel model of in-

terest.

It has been shown in [5] that, for the recursive least squares

(RLS) algorithm tracking a time-varying system, the MSE

components due to estimation error and lag can be approx-

imated as

εest ≈ 1 − λ

1 + λ
σ2, and (8)

εlag =
σ2

v

2(1 − λ)
Lσ2

x.

Leveraging the RLS channel estimation implicit in the BMLSD

metric, we employ the approach presented in [5] to select a

value for λ. MSE due to lag is computed based on the as-

sumption that the time-varying channel follows a first-order

Markov model, e.g.

hnTs
= h(n−1)Ts

+ vn, (9)

where vn is a zero mean Gaussian random vector with diag-

onal covariance matrix σ2
vI . The total excess MSE is then

given by

εtot =
1 − λ

1 + λ
Lσ2 +

1
2(1 − λ)

Lσ2
xσ2

v . (10)

Taking the derivative with respect to λ and setting it to zero

yields the MSE-minimizing forgetting factor:

λ∗ =
1 −

(
σx

2σv
2

4σ2

) 1
2

1 +
(

σx
2σv

2

4σ2

) 1
2
. (11)

For the channel model described in Section 2, σ2
v is easily

calculated from (3) and (9) as

σ2
v = 2J0(0) − 2J0(ωd). (12)

3.2. Addressing Unknown Channel Order

When the communication channel is unknown and time vary-

ing, the effective length will likely also be unknown to the

receiver. In order to overcome uncertainty in channel order,

we evaluate the path metric (4) across a range of channel

lengths. Typically, some statistical information about the na-

ture of the channel is available, and hence we have an estimate

of the maximum channel duration Lmax. At each stage of the

BMLSD tree search and for each path in the stack, we employ

a metric given by

mB(bn
1 ) = max

l=1,...,Lmax

P (bn
1 |zrN

1 , C, l). (13)

Empirical results indicate that the proposed max approach

achieves faster and better performance than marginalizing the

channel order, e.g. P (bn
1 |zrN

1 , C) =
∑Lmax

l=1 P (bn
1 , l|zrN

1 , C).
Because the path metric can be separated into real and

imaginary components, channel order may be estimated dif-

ferently for each part, which is particularly beneficial when

only one of the components enters a deep fade.

4. SIMULATION RESULTS

To evaluate the performance of the proposed detector, we have

simulated a time-varying channel using Jakes’ reference model

with three independent channel taps, Q = 100 propagation

paths, a maximum Doppler shift of fD = 40Hz, a sampling

frequency of Ts = 10μsec, and a carrier frequency of 900MHz.

For each information block, an independent time-varying chan-

nel is generated. The channel taps are weighted according to

[0.407 0.815 0.407], and the average channel energy is nor-

malized to unity for each block. A rate R = 1
2 convolutional

encoder with generator matrix G(x) = [x + 1 x2 + x + 1] is

employed prior to transmission over the channel.

Figure 2 shows the performance of the proposed algo-

rithm as a function of the forgetting factor λ when SNR is held

constant at 7 dB. The performance of the BMLSD approach

is compared to that of MLSD (Viterbi) with a known chan-

nel response. The MSE-minimizing forgetting factor based

on the channel parameters considered can be calculated using

(11) as λ∗ = 0.992. The simulation results show that, when

the time-varying channel taps do not enter a deep fade, the

forgetting factor that minimizes bit error rate (BER) matches

well with that predicted to minimize MSE. Empirical perfor-

mance in this case is robust to some change in the forgetting

factor; choosing λ as low as approximately 0.97 has little ef-

fect on BER. When the channel taps may enter a deep fade,

the simulation results reveal that the value of λ for which min-

imum BER is achieved is somewhat smaller than that ana-

lytically computed for minimizing MSE, perhaps indicating

faster channel variation than the MSE-minimizing analysis

predicts. Since a forgetting factor of λ = 0.97 achieves strong

performance in both good and deep fade conditions, we have

fixed λ at this value for the remaining simulations.

Figure 3 shows the simulated performance of the pro-

posed BMLSD approach with known channel order for block

sizes of N = 20 and N = 50 bits. In addition, the per-

formance of the BMLSD approach when channel order is

unknown (and the metric is calculated according to (13)) is

plotted for N = 50 bits. The maximum channel order is as-

sumed to be Lmax = 5. The performance of the BMLSD

for N = 20 is nearly identical to that for N = 50, indicat-

ing the attractiveness of the algorithm for applications with

very small packet sizes. Note that increasing the block size

beyond 50 bits does not improve the performance of the algo-

rithm due to the memory limit (approximated by 1/(1 − λ)
[5]) imposed by the forgetting factor.
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Fig. 2. BMLSD performance as a function of the forgetting

factor λ. SNR is fixed at 7 dB, and blocks of length N = 50
are transmitted.

For comparison, Figure 3 also shows the performance of

stochastic particle filtering (SPF) based joint blind equaliza-

tion and decoding [6] with 500 particles, as well as the LMS-

based Viterbi Algorithm [1] (performed across both the code

and channel) retaining 16 paths to each state. Blocks of length

N = 50 were transmitted, and the channel length was as-

sumed known for both algorithms. Simulation results reveal

that the proposed BMLSD approach achieves significantly

lower BER than both the LMS-Viterbi and SPF algorithms.

The complexity of the algorithms considered is a function

of both the number of paths explored and the complexity of

the path metric update. The LMS-Viterbi metric update is the

least complex as it requires no matrix inversion. The met-

ric updates of the BMLSD and SPF algorithms are similar to

each other in complexity. The SPF algorithm must update

the metric for all particles (paths) at each iteration, however,

while the BMLSD algorithm updates only one path. Note that

the number of paths explored in the BMLSD tree-search is a

random quantity. By setting the BMLSD stack size to the

number of particles in the SPF approach, we guarantee that

the worst-case complexity of the BMLSD algorithm is equal

to that of SPF. For SNR of at least 7 dB, our simulations show

that the BMLSD approach requires significantly fewer path

extensions than the worst-case scenario and thus boasts lower

overall complexity than SPF.

5. CONCLUSIONS

We have developed a Bayesian approach to blind detection of

data transmitted over a complex time-varying multipath chan-

nel. Using a forgetting factor matched to the rate of variation

of the channel and a tree-search metric augmented to elimi-

nate the need for channel length knowledge, we address the

challenges of implicitly estimating a dispersive fading chan-

Fig. 3. Performance of the BMLSD, particle filtering, and

LMS-Viterbi Algorithm as a function of SNR. BMLSD per-

formance is considered for varying block size, as well as with

and without knowledge of the channel order.

nel whose effective order may also vary with time. Simu-

lation results show that the proposed detector can achieve

lower BER than competing blind detection schemes, even

when only the BMLSD approach faces uncertainty in the chan-

nel order.
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