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ABSTRACT

Diversity order is widely adopted as a critical metric on the reli-
ability of wireless transmissions over fading channels. Numerous
designs have been proposed to collect the diversity from different
types of channels. However, since the simulators and practical sys-
tems can only afford finite bits to represent the real/complex num-
bers, the definition of diversity needs to be revisited. In this paper,
we thoroughly investigate the effects of finite-bit representation on
the statistical properties of the channel and the diversity with dif-
ferent transmitters/receivers. We show that finite-bit representation
may cause diversity loss relative to the infinite precision representa-
tion. For different transmission systems, the diversity loss follows
different patterns as the number of bits decreases. Furthermore, we
find that the number of non-vanishing eigenvalues plays an impor-
tant role in quantizing the diversity for infinite lattice/constellation.
Numerical examples verify our theoretical findings.

Index Terms— Diversity, finite-bit representation, maximum
likelihood equalizer, lattice reduction

1. INTRODUCTION

To deal with the deleterious channel fading effects on the system per-
formance, diversity-enriched transmitters and receivers have well-
appreciated merits. Many transmission designs have been proposed
to exploit the diversity from different channels, e.g., golden code
[1, 10] for multi-antenna channels and linear complex field coded
(LCFC-) OFDM systems [5] for frequency-selective channels. To
our best knowledge, all these existing results on diversity are based
on the mathematical derivation in real or complex field, which as-
sumes the numbers are represented in infinite accuracy. However,
in practical systems and even simulation tools (including MATLAB),
only finite bits are afforded to represent real/complex numbers. Surely,
this will affect the performance of the communication systems [4].
Therefore, the diversity has to be revisited and quantified for systems
with finite-bit representation.

In this paper, we consider finite-bit representation for the com-
plex channel, signal and noise. This means that every complex num-
ber is mapped to finite bits according to a certain mapper (or quan-
tizer) [4]. We first analyze the effects of finite-bit representation on
the Gaussian channel. We show that the Gaussian complex channel
represented by finite bits loses diversity when signal-to-noise ratio
(SNR) is high enough. We then study the diversity of different sys-
tems with finite-bit representation and maximum-likelihood equal-
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izer (MLE). We also compare the sensitivity of different receivers
(MLE and lattice reduction aided equalizers (LRAEs)) with finite-
bit representation. It is shown that although theoretically LRAE may
collect the same diversity as MLE in the real/complex field, it may
show different diversity when one considers finite-bit representation.
Note that the key player of this analysis is not how good the quan-
tizer is, but lower and upper bounds of the finite-bit representation
cause the diversity loss.

2. SYSTEM MODEL AND PROBLEM STATEMENT

Consider block transmissions

y = Hs + w, (1)

where H is the M ×N complex Gaussian channel matrix with zero
mean, the N × 1 vector s consists of the information symbols, y is
the M×1 received vector, and w is independent and identically dis-
tributed (i.i.d.) complex additive white Gaussian noise with variance
σ2

w. We assume that the channel matrix H is known at the receiver,
but unknown at the transmitter. Note that the channel matrix H is
general enough to represent a number of cases, e.g., multi-antenna,
precoded OFDM, and multiuser channels.

The MLE for the model in (1) is given as

ŝml = arg min
s̃∈SN

‖y −Hs̃‖2, (2)

where S is the constellation of the symbols. MLE in (2) provides op-
timal error performance with the price paid on high decoding com-
plexity (O(|S|N )). Suppose that signal s is transmitted while vector
s̃ �= s is detected at the receiver. The pairwise error probability
(PEP) of MLE in (2) is quantified as [1, 5, 10]

Pe(s → s̃|H) = Q

(
1

σ2
w

‖H(s̃ − s)‖2
)

:= Q

(
1

σ2
w

‖He‖2
)

, (3)

where e = s̃ − s is the error vector, and Q(·) is the Gaussian tail
function. By defining an MN × 1 vector h = [hT

1 , . . . , hT
N ]T ,

where hn is the nth column of H , we have

‖He‖2 = hHEh ∼ h̃
H

Aeh̃, (4)

where E = IM ⊗
(
(eT )HeT

)
, the correlation matrix of h is Rh =

E[hHh] with rank ρh, for which the SVD is UH
h ΛhUh, an ρh × 1

vector h̃ has i.i.d. complex Gaussian entries, Ae = Λ
1
2
h UH

h EUhΛ
1
2
h

is determined by the error vector e and Rh, and “∼” denotes the
identical distributions. Since each entry of the signal s is drawn
from the constellation S, the error signal e belongs to a set Se =
{e := s̃ − s|s̃ �= s, s̃, s ∈ SN}. With infinite bits representation,

the diversity order G
(i)
d collected by the MLE is defined as (see e.g.,

[1, 5, 10])

G
(i)
d = min

e∈Se

rank(Ae). (5)
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In this paper, instead of assuming each number (the real or com-
plex numbers) is represented by infinite bits, we consider the situ-
ation where finite-bit representation is adopted, e.g., fixed-point or
floating-point number representation. In this case, a small real num-
ber may be quantified to zero. Thus, the performance of MLE in (2)
is affected because the rank of Ae in (4) may be different due to the
following two cases:

S1) The statistical property of H is changed when the number of
bits adopted is too small;

S2) H is still well approximated as a complex Gaussian random
matrix, but the constellation S spans a wide range and thus
the rank of finite-bit represented Ae is smaller than the rank
of original Ae.

In the following, we analyze the diversity order for these two cases
with finite-bit representation.

3. FINITE BIT REPRESENTED CHANNELS

A Gaussian random variable h is represented by finite bits as (using
fixed-point with two’s complement arithmetic)

F(h, G, F ) = −bG−12
G−1 +

G−2∑
i=0

bi2
i +

F∑
i=1

ai2
−i, (6)

where G and F are the number of integer and fractional bits, and
ai and bi are binary bits. When the number of bits is not enough,
the Gaussian variable can not be well approximated, and thus the
diversity may be lost. Here, we use one example to show how the
number of bits adopted will affect the diversity.

Example 1 (Finite-bit represented Gaussian channel): We as-
sume 4-QAM constellation and M = N = 1 in (1). We plot the bit-
error-rate (BER) curves in Fig. 1 with fixed-point arithmetic, and the
numbers of integer and fractional bits (G, F ) are (10, 10), (8, 8), (6, 6),
and (4, 4), respectively. We also plot one curve for the same system
with 15 digits scaled fixed-point format in MATLAB as a benchmark.
From the figure we can see, the diversity is either one or zero (error
floor), since H now is a complex Gaussian random variable.
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Fig. 1. Effects of finite-bit representation on diversity
Given finite-bit representation, when SNR is high enough, error

floor of the BER curves shows up because finite bits cannot differ-
entiate large numbers above a certain bound. How many bits are

adopted determines when the error floor (zero diversity) appears.
Approximately, based on (6), the error floor appears at:

SNR = (G + F )10 log10 2 ≈ 3(G + F )dB.

Thus, in practical systems, the number of bits is chosen large enough
(> (8, 8)) so that within a reasonable SNR range (< 50 dB), the
channel will not lose its diversity.

4. DIVERSITY WITH DIFFERENT TRANSMITTERS

To analyze the diversity for ANY QAM constellation with finite-bit
representation, we need to focus on the structure of Ae. Suppose that
the SVD of Ae in (4) is UH

e ΛeU e, where Λe is a diagonal matrix
with the diagonal entries α1, α2, . . . , αρe as the eigenvalues of Ae

and ρe is the rank of Ae. Thus, we have h̃
H

Aeh̃ =
∑ρe

n=1 αn|h̄n|2,

where h̄n is the nth entry of h̄ = U eh̃. Since U e is a unitary ma-
trix, we know h̄ is a vector with i.i.d. complex Gaussian distributed
entries. For systems with finite-bit representation, if αn is less than
εth which is the lower bound of the finite-bit representation, it will
be quantified to zero. Thus, for systems with finite-bit representa-
tion, the rank of Ae needs to be revisited. The result is summarized
as follows.

Proposition 1 Suppose the transmission system is based on finite-
bit representation. Given the specific constellation, the diversity or-
der collected by the MLE in (2) is

G
(f)
d = min

e∈Se

rank(F(Ae, G, F )), (7)

where F(a, G, F ) is defined in (6) and Ae is expressed as in (4).

Obviously, the system diversity with finite-bit representation in
(7) depends on two terms: i) the range of the values in Ae; ii) the
number of bits adopted to represent the numbers. For fixed number
of bits, the diversity is determined by the rank of quantized Ae, i.e.,
the non-zero eigenvalues of Ae. In general, the eigenvalues of Ae

depend on the constellation size and the transmitter structure. To
find the non-zero eigenvalues for any constellation is equivalent to
finding non-vanishing eigenvalues which are defined as follows.

Definition 1 Suppose α1 ≤ α2 ≤ · · · ≤ αρe are the ordered
nonzero eigenvalues of Ae in (4). If there exists a constant ε > 0
such that

inf
|S|→∞

|αn| > ε, (8)

then αn is called a non-vanishing eigenvalue as the constellation
size increases to infinity.

If the eigenvalue αn is vanishing, then given a finite number of bits
(no matter how many bits are adopted), αn will be smaller than εth

and quantified to zero when the constellation size is large enough.
Furthermore, with some constraints of the transmitter, e.g., the fixed
norm of e or the determinant is nonzero, not all eigenvalues of Ae

vanish simultaneously. Thus, we can see, the asymptotic diversity as
the constellation size increases to infinity is the smallest number of
non-vanishing eigenvalues of Ae. Now we summarize our results as
follows.
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Proposition 2 The asymptotic diversity collected by MLE as the
constellation size increases to infinity is defined as

G
(a)
d = lim

|S|→∞,∀F
min
e∈Se

rank(F(Ae, G, F )). (9)

In other words, the asymptotic diversity equals the number of non-
vanishing eigenvalues of Ae.

Proposition 2 shows that given finite-bit representation, when
the constellation size keeps increasing, even MLE may lose diversity.
A natural question now is how fast the schemes lose diversity. In
the following, we use three examples [1, 3, 5, 10] to illustrate this
phenomenon.
Example 2 (V-BLAST systems): Suppose the channel coefficients
are i.i.d. complex Gaussian distributed [3]. Eq. (4) is rewritten as

‖He‖2 = hH
(
IM ⊗

(
(eT )HeT

))
h, (10)

where h is an MN ×1 column vector by stacking all columns of H
into one column. Thus, according to [3], the maximum diversity is
M . Specifically, in this case, the M nonzero eigenvalues of IM ⊗
((eT )HeT ) are the same as ‖e‖2, which is lower bounded by the
minimum Euclidean distance (dmin) of the constellation. Thus, if
the minimum value εth that the finite bits can represent is smaller
than dmin, then the diversity is M . Otherwise, the diversity is zero.
All eigenvalues vanish simultaneously when we reduce the number
of bits.
Example 3 (Precoded OFDM systems): The LCFC-OFDM system
[5] is designed to collect multipath diversity of frequency-selective
channels. The equivalent channel matrix for LCFC-OFDM systems
is H = DHΘ, where DH = diag [H(0), H(1), . . . , H(N − 1)]
with H(n) as the channel response at subcarrier n, and Θ is an
N × N full-rank square unitary precoder. By stacking H(n) into
one N × 1 column h, we can rewrite (4) as

‖He‖2 = hH
(

diag(u)Hdiag(u)
)

h, (11)

where u = Θ(s̃ − s). The eigenvalues of Ae are the norm of the
entries of u. As shown in [5], the minimum entry of |u| only de-
pends on the minimum distance dmin of the constellation adopted.
Thus, the minimum eigenvalue will not approach zero as the con-
stellation size increases to infinity. Neither will other eigenvalues.
As the number of bits decreases, not like V-BLAST, LCFC-OFDM
loses diversity gradually since the eigenvalues are not all equal.

Example 4 (Golden code for 2 × 2 systems): The golden code is
a full-diversity-full-rate space-time coding scheme for 2 × 2 i.i.d.
channels [1, 10]. Since golden code is implemented in two time
slots, the error pattern e now is a 2 × 2 matrix. Thus, (4) can be
expressed as

‖He‖2 = hH
(
I2 ⊗AHA

)
h, (12)

where h is a 4 × 1 vector by stacking all four channel coefficients
into one column, and

A =

[
e11 cos θ1 − e22 sin θ1 e12 cos θ2 − e21 sin θ2

e12 sin θ2 + e21 cos θ2 e11 sin θ1 + e22 cos θ1

]
, (13)

where emn is the (2(m− 1) + n)th entry of e. The two eigenvalues
of AHA are

α1,2 = ‖e‖2
⎛
⎝1±

√
1− 4 det(AHA)

‖e‖4

⎞
⎠ . (14)
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Fig. 2. Performance with finite-bit representation

Although it has been shown that |det(A)| ≥ 1

2
√

5
with the optimal

(θ1,θ2) = ( 1
2

arctan 1
2
, 1

2
arctan 2), one of the eigenvalues may go

to zero.

Given an error pattern e21 = e22 = 0, and e11, e12 real integers
such that

|e11 −
√

2e12| < ε
√

e12 , ∀ ε > 0, (15)

then it can be verified that det(AHA) = 1
20

(e2
11 − 2e2

12)
2 <

1
20

(ε2e12 + 2
√

2εe
3
2
12)

2. Thus, it is ready to show that when e11 and
e12 go to infinity, one of the eigenvalues in (14) approaches zero.

Because there are two groups of identical eigenvalues in Ae, the
number of non-vanishing eigenvalues is 2. It is not difficult to find
such an error pattern that makes one of the eigenvalues be quantized
to zero. For example, using MATLAB with 15 digits scaled fixed
point format, when e = [65780, 85786; 59796, 69848], one eigen-
value of AHA is quantified to zero, while the determinant of AHA
is 2.2×104 and rank(AHA) = 1. Although an extremely large con-
stellation is needed to reach this error pattern, the diversity for this
particular constellation is 2, according to the code design in [10].

Example 5 (Diversity of systems with finite-bit representation):
We plot the performance of LCFC-OFDM systems [5] for frequency-
selective channels with channel order 3 (multipath diversity is 4), V-
BLAST systems [3] for 4 × 4 i.i.d. channels, and golden code [10]
for 2 × 2 i.i.d. channels. We adopt 4-QAM and fix the number of
integer bits G and number of fractional bits F as (16, 16) and (6, 6),
respectively. From Fig. 2 we observe that diversity 4 is collected
by all these three systems when the number of bits is high enough.
However, when the number of bits is low, diversity is lost when SNR
is high.

5. DIVERSITY COLLECTED BY DIFFERENT RECEIVERS

In this section, we illustrate that finite-bit representation also affects
the diversity that a receiver can collect. Instead of MLE, we con-
sider LRAEs, which are proposed in [2, 6, 8, 9] to improve the per-
formance of LEs without increasing complexity much. We adopt
the complex LLL (CLLL) algorithm [2, 6] to perform LRAE on the
channel matrix H . A reduced lattice basis H̃ = HT is obtained
by the CLLL algorithm, where T is a unimodular matrix with all the
entries being Gaussian integers and the determinant of T being ±1

or ±j. Then we perform the ZF equalizer H̃
†

instead of H† to the
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Fig. 3. Performance of golden code

observation vector as

x = H̃
†
y = T −1s + H̃

†
w := z + n. (16)

Since all the entries of T −1 and the signal constellation belong to
Gaussian integer ring, the entries of z are also Gaussian integers.
Thus, we perform the first hard-decoding step by rounding x to the
nearest Gaussian integers to get ẑ. The second hard-decoding step is
to quantize T ẑ to the signal constellation S to obtain the estimated
symbols ŝ. The detailed algorithm can be found in [2, 6].

Note that the constellation size of z is infinite because the entries
of T can be arbitrarily large. Furthermore, as stated in [2, 6], the
CLLL algorithm upper bounds the orthogonality deficiency of H̃ .
Thus, according to the results in [11], LEs based on H̃ have the
same diversity as that of MLE based on H̃ . For the MLE based on
H̃ , we can express the PEP as in (3)

Pe(z → z̃|H̃ , {z̃, z} ∈ Z[j]N×1) = Q

(
1

σ2
w

‖H̃(z̃ − z)‖2
)

,

where Z[j] denotes the complex integer set whose elements have
the form Z + jZ, with j =

√−1. Then, in the first quantization
step, LRAEs achieve the same diversity as MLE based on infinite
constellation under finite-bit representation. Now, we summarize
the result as follows.

Proposition 3 Given finite-bit representation, the diversity collected
by LRAEs is the same as the asymptotic diversity enabled by the
transmitter with infinite constellation.
With Proposition 3, we can then quantify the diversity collected by
LRAEs for general systems. For example, for V-BLAST and LCFC-
OFDM systems, LRAEs collect the same diversity as MLEs, be-
cause the minimum eigenvalue is non-vanishing as constellation size
increases. This is consistent with the theoretical results in [6, 7].
In general, we claim that to design a coding scheme which could
achieve full diversity with LRAEs at fairly low complexity, the ma-
trix Ae in (4) needs to be designed so that the minimum eigenvalue
is non-vanishing when constellation size increases to infinity.

Example 6 (Diversity of golden code): In this example, we im-
plement the golden code in [10] for a 2 × 2 system in MATLAB.
The channel coefficients are assumed to be i.i.d. complex Gaussian
random variables. Four detectors are adopted to recover the signal:
ZF, LR-aided ZF, sphere decoding (SD) and ML detectors. It can
be observed from Fig. 3 that both SD and ML detectors exploit full

diversity 4. ZF equalizer collects diversity 1 [7] while LR-aided ZF
equalizer only has diversity 2. LRAE loses diversity 2 because of
the finite-bit representation of MATLAB, which verifies our analysis
in Proposition 3.

6. CONCLUSIONS

In this paper, we analyze the effects of finite-bit representation on
determining system diversity. We show that for a specific constella-
tion, the diversity enabled by the transmitter depends on the number
of bits adopted. Furthermore, the asymptotic diversity as the con-
stellation increases to infinity equals the number of non-vanishing
eigenvalues. We also apply these results to quantify the diversity of
LRAEs for systems with finite-bit representation.1
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