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ABSTRACT

There have recently been a large number of papers that derive the di-
versity order of various, low complexity, suboptimal receiver struc-
tures for MIMO communications. In almost all analyses the MIMO
channel is assumed to be i.i.d. Rayleigh fading. It is of interest to
investigate how these results generalize to other fading models (e.g.,
correlated Ricean fading). We show in this paper that the diversity
achieved by virtually any receiver is preserved within a very general
class of fading models (including i.i.d. Rayleigh fading and corre-
lated Ricean fading). This result obviates the need to recalculate the
diversity of various receivers for different fading distributions in a
piecemeal fashion.

Index Terms—Multiple-input multiple-output (MIMO), space-
time block codes (STBC), receiver diversity, fading.

1. INTRODUCTION

Background. In the context of narrowband MIMO communications
over block-fading channels, there have been several papers dealing
with the problem of determining the diversity order obtained by a
specific receiver structure [1–4]. In general terms, the diversity or-
der of any particular communications scheme will of course also
depend on the coding applied at the transmitter and on the statistical
properties of the MIMO channel. Typically, the MIMO channel is
assumed to be i.i.d. Rayleigh fading. Although there is no doubt that
this assumption comes with a certain mathematical convenience, it
may not be physically justified for the scenarios of interest [5].

For systems using space-time block codes (STBCs) and
maximum-likelihood (ML) detection/decoding, it is well known
that the diversity order is not sensitive to the i.i.d. Rayleigh fad-
ing assumption. In particular, the diversity order achieved over an
i.i.d. Rayleigh fading channel is fully determined by the rank of the
codeword difference matrices, and remains the same under (non-
singular) correlated Rayleigh and Rician fading assumptions. This
is relatively straightforwardly proven by analyzing the pairwise er-
ror probability (PEP), see e.g. [6] or [7] for the case of orthogo-
nal STBCs. A similar result, obtained in [8], states that the optimal
diversity-multiplexing tradeoff is unaffected by the assumption of
correlated Rayleigh or Ricean fading.

Contributions. A natural question is thus whether these conclusions
hold exclusively for optimal transmitters and receivers, and the pur-
pose of this paper is to demonstrate that this is not the case. The
main point we wish to make is that the diversity order of virtually
any reasonable receiver does not strongly depend on the particular
assumptions regarding the fading characteristics. This is true even
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when the detector considered is not able to achieve the full diversity
offered by the channel and the coding. We give a mathematically
precise statement to this effect in Proposition 1 (Section 2), where
we show that the diversity order is constant over a class of channel
distributions. The value of this result is that it straightforwardly ex-
tends several previous results on receiver diversity, derived under the
i.i.d. Rayleigh assumption, to a large class of channel distributions.
This is especially useful when the receiver of interest is not easily
analyzed using some set of PEP events.

It should also be noted that although we make and prove our
statements in a more general setting, we shall exemplify them by ex-
plicitly considering detectors for spatial multiplexing systems. The
reason for this is not that spatial multiplexing is inherently more in-
teresting, but rather that there exists a multitude of receivers previ-
ously proposed for this transmission strategy. In contrast, much of
the research into general STBC schemes have focused on designs for
which the ML detector exhibits a particularly simple structure (see
e.g. [9]). Although our results apply to these cases as well, they are
not as illustrative of the point we wish to make.

2. SYSTEMMODEL AND DEFINITIONS

System Model. We will explicitly consider the block fading MIMO
channel model given by

Y = HC + V , (1)

where H ∈ C
n×m is the channel matrix containing the equivalent

complex baseband gains (fading coefficients); C ∈ C ⊂ C
m×l

is the transmitted space-time block codeword drawn from a code-
book C; Y ∈ C

n×l is a matrix containing the received signals; and
V ∈ C

n×l is additive Gaussian noise, assumed to be spatially and
temporally white with variance σ2 per complex component. The ran-
dom channel matrix is assumed to be distributed according to some
distribution μ, characterized by a probability density function (pdf)
fμ. The precise assumptions regarding μ will be made clear below.
We will also assume that the transmitter has no channel state infor-
mation, in which case the transmitted codeword C is statistically
independent ofH.
Receivers. We will consider the generic problem of detecting the
transmitted codeword C under the assumption that the receiver of
interest is allowed to form a decision Ĉ ∈ C based on the receive
matrix Y, on the channel matrix H, and possibly on a-priori infor-
mation regarding the noise variance σ2. Such a receiver can be fully
characterized by a (measurable) mapping

ϕ : C
n×l × C

n×m × R
+ �→ C , Ĉ = ϕ(Y,H, σ). (2)

We emphasize that this characterization does not exclude noncoher-
ent or training-based detectors, since ϕ(Y,H, σ) may be indepen-
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dent of H. However, the detector is not allowed to change its deci-
sion policy depending on the particular distribution μ, at hand. The
complete set of mappings of the form (2) is slightly to broad to pro-
vide a useful characterization of the receivers of interest. In par-
ticular, we need to restrict attention to the class of receivers whose
performance can be characterized as a function of the average sig-
nal to noise ratio (SNR). This requires that the code-word decisions
Ĉ remain unchanged when the channel matrix H and the noise V

undergo common scalings, and give the following definition.

Definition 1 A receiver is said to be standard if its output is invari-
ant with respect to a common scaling of the inputs:

ϕ(Y,H, σ) = ϕ(κY, κH, κσ) (3)

for all κ > 0.

We stress that this property is not at all restrictive, i.e., virtually
any reasonable detector will be standard. In the following, we dis-
cuss some well-known illustrative examples. Let us first consider the
ML detector given by

ϕML(Y,H, σ) � arg min
Ĉ∈C

‖Y − HĈ‖2 . (4)

Since arg min
Ĉ∈C ‖κY−κHĈ‖2 = arg min

Ĉ∈C κ2‖Y−HĈ‖2,
it is obvious that the minimizer of (4) remains unchanged under a
common scaling of H and Y. Thus the ML detector is a standard
receiver. It can also be seen that if the linear minimum mean square
error filter, G � (HHH + σ2I)−1HH is applied to the received
signal, the output Z = GY will be invariant to common scalings
of H, Y, and σ. Thus, any receiver whose decision is based on Z

is standard. The same is true for output of the zero forcing (ZF)
filter, given by H†Y where H† denotes the pseudo-inverse of H,
and for ZF and MMSE decision feedback detectors, all of which are
standard receivers.

Performance Metrics. An error is declared whenever a receiver
decides on a codeword different from the transmitted one, i.e., if
Ĉ �= C. The associated probability of error is given by

pe(μ, σ) � P(Ĉ �= C) . (5)

We find it illustrative to make the dependence on the channel dis-
tribution and noise variance explicit. The corresponding diversity
order is defined by

d(μ) � lim
σ2→0

ln pe(μ, σ)

ln σ2
(6)

where the dependence on the distribution is again made explicit. The
probability of error and the diversity order of course also depend
very much on the codebook C and the receiver ϕ that are used, al-
though we do not make this explicit in our notation.

Channel Models. The class of channel distributions that we shall
consider are characterized by the following definition.

Definition 2 A channel distribution μ is said to be simple if it has a
density function fμ(H) which is

1. continuous and strictly positive atH = 0;

2. upper bounded according to

fμ(H) ≤ Kμ exp(−‖H‖aμ) . (7)

for someKμ and aμ > 0.

The class of all simple distributions is denoted S . In order to
make the generality of this class of distributions clear, we point out
that it includes the important special cases of Rayleigh or Rician
fading with arbitrary (non-singular) correlation, i.e.,

vec(H) ∼ NC(m,R)

with some mean vector m and correlation matrix R 
 0. Note
also that R does not necessarily have to be Kronecker-structured
[5]. Definition 2 does exclude, however, Nakagami fading channels1
and Rayleigh fading channels with singular correlation (rank(R) <
mn). Still, restricting attention to the class of simple distributions
allows us to give a generally valid statement regarding the diversity
of any standard receiver.

3. MAIN RESULT AND EXAMPLES

The main contribution of this work is captured by the following
proposition (the proof is provided in Appendix A). In essence, it
states that the diversity achieved with almost any receiver is not sen-
sitive to assumptions regarding the fading distribution. However, it
should be noted that Proposition 1 does not actually state how the
diversity should be computed, only that once this is done for some
code-receiver pair and simple distribution, the result holds univer-
sally for all simple distributions.
Proposition 1 The diversity order of any standard receiver is con-
stant within the set of simple distributions,

μ, ν ∈ S =⇒ d(μ) = d(ν) .

This result directly applies to ML detection and to MMSE and ZF
detectors (as well as their decision-feed back variants). We next con-
sider some more interesting examples in order to illustrate the type
of conclusions that follows by the proposition.

3.1. LLL Lattice-Reduction-Aided ZF Detector

The use of lattice reduction (LR) in order to improve the perfor-
mance of standard suboptimal detectors, such as the ZF detectors,
was suggested in [10]. Consider the system

y = Hc + v (8)

where the transmitted signal vector c ∈ Z
m
C where ZC = Z + iZ

is the set of complex (Gaussian) integers. Note that (8) represents a
special case of (1) obtained with l = 1. The key idea of LLL LR-
aided ZF detection is to view H as the basis of an m-dimensional
lattice in C

n and to perform a basis transformation via the LLL al-
gorithm [11] prior to ZF detection. The detector output equals (H†

denotes the pseudo-inverse ofH)

ĉ = ϕLLL-ZF(y,H, σ) = Tθ[T−1
H

†
y] (9)

where θ[·] denotes rounding to the closest point in Z
m
C ; furthermore,

the matrixT is obtained fromH via the LLL algorithm and provides
a one-to-one mapping from Z

m
C to Z

m
C .

It was recently shown under the assumption of i.i.d. Rayleigh
fading that LLL LR-aided ZF detection achieves the maximal receive
diversity n [1]. Furthermore, the LLL LR-aided ZF detector ϕLLL-ZF
is a standard receiver since H†y in (8) is invariant under common
scaling of y and H and the matrix T chosen by the LLL algorithm
is invariant with respect to scaling of H [11]. Hence, Proposition 1
implies that the diversity order of ϕLLL-ZF is n for any simple distri-
bution.

1We note, however, that there are MIMO systems for which the diversity
achieved under Nakagami and Rayleigh fading is indeed different.
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3.2. Partial Equalization

In [2], a detector based on an idea termed partial equalization (PE)
was proposed. The detector is applicable to any system of the form
(8). It obtains an estimate of c ∈ C based on the metric

ĉ = ϕα
PE(y,H, σ) = arg min

c∈C
(zZF − c)H(HH

H)1−α(zZF − c) ,

(10)
where zZF = H†y and α ∈ [0, 1] is a parameter that allows to
trade performance versus complexity. Note that standard ML and
ZF detectors are special cases of (10) corresponding to α = 0 and
α = 1, respectively. When α is increased from 0 to 1, ϕα

PE achieves
a diversity that changes continuously from n (ML diversity) to n −
m + 1 (ZF diversity). The key observation is that by increasing
α, also the conditioning of (HHH)1−α is improved which in turn
makes (10) easier to solve.

Assuming i.i.d. Rayleigh fading, it was shown in [2] that for
α = 1

2
a diversity of

d =
1

2
n +

1

2
(n − m + 1) , (11)

midway between ML and ZF diversity, is obtained. Since H†y is
invariant under common scaling ofH and y, and since the minimizer
of (10) is not affected by a scaling of (HHH), it follows that the PE
receiver ϕα

PE is standard. Proposition 1 thus allows us to conclude
that the PE receiver ϕ1/2

PE achieves the diversity in (11) for any simple
fading distribution.

3.3. Further Examples

The fixed-complexity sphere decoder proposed in [12] achieves full
diversity under the assumption of i.i.d. Rayleigh fading [3]. Since
this receiver can be shown to be standard, the full-diversity result
remains valid for any simple distribution. Further, it was rigorously
established in [4] that (optimal) ordering will not increase the di-
versity order of the ZF decision feedback detector (which is a stan-
dard receiver). Again, the proof was given under the assumption of
i.i.d. Rayleigh fading but, as a consequence of Proposition 1, holds
true for any simple fading distribution.

4. CONCLUSIONS

We have established that the receive diversity of most MIMO re-
ceivers is not strongly affected by particular assumptions regarding
the channel’s fading distribution. Although this fact was previously
known for special cases of receivers and fading, we believe that it is
not widely recognized in the literature on MIMO receivers that such
a statement holds under surprisingly general terms. It should, how-
ever, also be stressed that we make no claim regarding the effect of
the fading distribution on the coding (or rather decoding) gain of any
particular receiver. This quantity could of course be sensitive to the
particular distribution. Still, if one is mainly interested in diversity
as a rough measure of a receiver’s robustness against fading, our re-
sult implies that it is sufficient to analyze the case of i.i.d. Rayleigh
fading.

A. PROOF OF PROPOSITION 1

We now prove that given any two simple distributions μ, ν ∈ S , it
follows that d(μ) = d(ν) for any standard receiver. Interestingly
enough, proving this general claim is easier than computing the ac-
tual value of d(μ) for specific receivers and fading distributions.

Let the conditional probability of error be defined according to

pe(μ, σ,C) � P(Ĉ �= C|C) .

The probability of error, defined by (5), is obtained according to

pe(μ, σ) =
X
C∈C

pe(μ, σ, C)P(C) .

Similarly, let the conditional diversity order be given by

d(μ,C) � lim
σ2→0

ln pe(μ, σ,C)

lnσ2
. (12)

It is straightforward to prove that

d(μ) = min
C∈C′

d(μ,C) .

where the minimum is evaluated over

C′
� {C ∈ C | P(C) > 0} .

To establish Proposition 1 it is therefore sufficient to show that
d(μ,C) = d(ν,C) for any μ, ν ∈ S and any C ∈ C′.

Let EC,σ be the set of channel and noise realizations for which
an error occurs, given that C was transmitted and the noise has
power σ2, i.e.,

EC,σ �
˘

(H,V)
˛̨
C �= ϕ(HC+V,H, σ)

¯
. (13)

The conditional probability of error can then be expressed as

pe(μ, σ,C) = P((H,V) ∈ EC,σ)

=

Z
EC,σ

fμ(H) fσ(V) dH dV (14)

where the independence ofH andV was used and where

fσ(V) = (πσ2)−nl exp(−‖V‖2/σ2)

denotes the probability density function of the noise.
By the assumption that μ is simple it follows that there are con-

stants Γ, γ > 0 for which

‖H‖ ≤ γ ⇒ fμ(H) ≥ Γ > 0 .

In particular, fμ(H) may be lower bounded according to

fμ(H) ≥ Γ [1 − χγ(H)], with χγ(H) =

(
1, ‖H‖ > γ

0, ‖H‖ ≤ γ .

It follows from (7) that fν(σ−εH) ≤ Kν where ε > 0 is an arbitrary
constant and hence

fμ(H) ≥ Γ [1 − χγ(H)] K−1
ν fν(σ−ε

H). (15)

By inserting (15) into (14) it follows that

pe(μ, σ, C) =

Z
EC,σ

fμ(H) fσ(V) dH dV

≥ ΓK−1
ν (I1 − I2) (16)

with

I1 �

Z
EC,σ

fν(σ−ε
H) fσ(V) dH dV , (17a)

I2 �

Z
EC,σ

χγ(H) fν(σ−ε
H) fρ(V) dH dV . (17b)
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Consider first the integral I1 in (17a). We perform the change
of variables H̃ = σ−εH and Ṽ = σ−εV. Note also that dH̃ =
σ−2εnm dH and dṼ = σ−2εnl dV. It further follows by (3) (with
κ = σ−ε) that

ϕ(HC + V,V, σ) = ϕ(H̃C + Ṽ, Ṽ, σ1−ε) .

Together with (13) this implies

(H,V) ∈ EC,σ ⇔ (H̃,Ṽ) ∈ EC,σ1−ε .

Thus, I1 is equivalently given by

I1 = σ2εn(m+l)

Z
E
C,σ1−ε

fν(H̃) fσ(σε
Ṽ) dH̃ dṼ .

Since

σ2εnl fσ(σε
Ṽ) = (πσ2(1−ε))−nl exp

`
− ‖Ṽ‖2/ σ2(1−ε)´

= fσ1−ε(Ṽ) ,

it follows that

I1 = σ2εnm

Z
E
C,σ1−ε

fν(H̃) fσ1−ε(Ṽ) dH̃ dṼ

= σ2εnm pe(ν, σ1−ε,C) , (18)

where the last equality is obtained by comparing to (14). Note also
that due to (18) it follows that

lim
σ2→0

ln I1

ln σ2
= εnm + (1−ε)d(ν,C) . (19)

where d(ν,C) is defined according to (12).
The integral I2 in (17b) can be bounded according to

I2 �

Z
EC,σ

χγ(H) fν(σ−ε
H) fσ(V) dH dV

≤

Z
χγ(H) fν(σ−ε

H) fσ(V) dH dV

=

Z
χγ(H) fν(σ−ε

H) dH

= σ2εnm

Z
χγ(σε

H̃) fν(H̃) dH̃

≤ σ2εmn

Z
‖H̃‖≥γσ−ε

Kν exp(−‖H̃‖aν ) dH̃ , (20)

where the last inequality follows by (7). Since the value of the inte-
gral in (20) decays exponentially with decreasing σ it follows that

lim
σ2→0

ln I2

lnσ2
= ∞ .

By comparing with (19), and assuming that d(ν,C) < ∞, it follows
that I2 tend to zero at a strictly faster rate than I1. In particular, this
implies that there exists σ′ such that for σ ≤ σ′ there is I2 ≤ 1

2
I1,

or equivalently
I1−I2 ≥ 1

2
I1 . (21)

Inserting (21) into (16) and using (18) yields

pe(μ, σ, C) ≥ 1
2
ΓK−1

ν σ2εnm pe(ν, σ1−ε, C) ,

for σ ≤ σ′ and hence it follows that

d(μ,C) ≤ εnm + (1−ε)d(ν,C) .

Since ε > 0 was arbitrary, we conclude that

d(μ,C) ≤ d(ν,C) . (22)

Note also that this conclusion is trivially satisfied if d(ν,C) = ∞.
Since no particular constraints were imposed on μ and ν other

than that they be simple distributions, the argument above can be
repeated with the roles of μ and ν interchanged, resulting in the in-
equality

d(μ,C) ≥ d(ν,C) .

Combined with (22) this finally implies

d(μ,C) = d(ν,C) ,

and thus concludes the proof. �
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