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ABSTRACT

In this paper we present theoretical performance analysis for
a blind frequency offset estimator for cross Quadrature Am-
plitude Modulated constellations. The estimator is based on
applying a tentative frequency offset compensation by means
of a nonlinear transformation of the received signal samples
and on estimating an accumulation function in different angu-
lar windows. For perfect frequency offset compensation, the
measurements are suitably clustered and their accumulation,
named “Constellation Phase Signature” (CPS), is a peaked
function of the window orientation. Hence, the frequency
offset estimator is selected by maximization of the peakness
of the accumulation function. The performance analysis is
shown to match the numerical simulations for medium to
high values of SNR.

Index Terms— Frequency estimation, Quadrature am-
plitude modulation.

1. INTRODUCTION

In general Quadrature Amplitude Modulated (QAM) trans-
mission, preliminary trained or blind carrier phase and fre-
quency offset estimation needs to be performed at the output
of the receiver. Although many standard communication sys-
tems adopt trained transmission, great bandwidth savings are
achieved using blind estimators. Recently, in [1], the authors
have introduced a nonlinear least-squares (NLS) estimator
for joint carrier phase and frequency offset estimation, that
minimizes the asymptotic (large sample) error variance. The
NLS estimator, which is constellation dependent, requires
gain/SNR knowledge and exhibits a performance degrada-
tion on cross constellations.

In [2] a novel blind frequency offset estimator for cross
QAM constellations has been introduced extending the phase
offset estimator presented in [3]. This estimator is based on
the observation that, when the frequency offset is perfectly
removed by preliminary compensation, a suitable nonlinear
transformation of the received signal samples exhibits a par-
ticular phase distribution, named Constellation Phase Signa-
ture (CPS). In ideal, noise-free QAM signalling, the CPS is
constituted by a discrete number of pulses whose locations
depend on the signal constellation, and retains a significant
peakness also in presence of channel noise. Hence, the fre-
quency offset can be estimated by searching the frequency
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compensation that maximizes the peakness of the CPS es-
timated on the compensated data. The resulting blind fre-
quency estimator does not need neither gain/SNR nor constel-
lation knowledge and performs well on cross constellations
for medium to high values of SNR. Here we present analyt-
ical performance evaluation for the CPS estimator presented
in [2]

This paper is organized as follows. In Sect.2 we intro-
duce the model of the received signal, while in Sect.3 we
recall the frequency estimator [2]. In Sect. 4 we present the
performance analysis for the CPS estimator. Sect.5 shows re-
sults of both theoretical performance analysis and numerical
simulations; for comparison sake, results of selected state-
of-the-art estimators [1] are also reported.

2. DISCRETE-TIME SIGNAL MODEL

Let us consider a QAM communication system, and let S[n]
be the n-th transmitted symbol drawn from a power nor-
malized M-ary constellation A = {So,..,Sp—1}. At the
receiver side, after front-end signal processing, a complex
low-pass version of the received signal is available for sam-
pling. Let us denote as X[n] the samples of the received
signal extracted at symbol rate. We will assume the follow-
ing analytical model of the signal samples X [n]:

X[n] = G 0327 Ien S[p] + Win) (1)

where G is the unknown overall gain, § and f. are the
unknown phase and frequency offset, and W(n] is a re-
alization of circularly complex Gaussian stationary noise
process, statistically independent of X[n]. The signal-

to-noise ratio (SNR) is defined as SNRE'G2 /02 | being

o2 ¥E {IW[n]|*} the noise variance.

We address the estimation of the carrier frequency offset
fe given a sample of N consecutive observations X [n|, n =
0,---, N —1. Due to the quadrant constellation ' symmetry,

without loss of generality, the frequency offset is limited to
|fel < 1/8.

IThe quadrant constellation symmetry causes a 7/2 ambiguity on the
phase of the signal samples, which cannot be recovered in absence of side
information.
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3. CPS BASED FREQUENCY OFFSET ESTIMATION
Let us consider the following nonlinear function [1, 3, 2] of
the received signal samples X [n] under a frequency compen-
sation of fo:

Yol [n] = | X[n]|F - e?4are{XInl}g—s2mdfon 2)

Let us define the polar representation Y (/o) [n] = ,,e7%n.
In the noise free case, and for equiprobable constellation
symbols, the pdf of the random variable Y /o) [n] is

M—-1

. 1 P
pR,<1> (rnvspmfo) *Mmzzoé(rn - (GC|Sm|) ) (3)
-0(on — 46, — darg Sy,)

where 6,, = 0+ 27 (f. — fo)n is the time-variant phase-offset
due to the residual frequency offset f. — fo.

For perfect frequency compensation fy = f., the noise-
free pdf of the random variable Y (/o) [n] becomes

2)

mO

(GelSml)"P(p—40—4 arg S,p,)

“
From (3), (4), we see that for fo # f. the pdf of the random
variable Y'/0)[n] is cyclically shifted of 46,, with respect to

the variable ¢, and p, (s, on; fo) = by, o (= 2m4(fe —
fo)n; fe).

In presence of additive noise, the Dirac pulses appearing
in (3) become wider pulses whose shape depends on the
SNR and the noise pdf?; however, we can still observe the
pdf cyclic shift by the time varying phase-offset 6,, due to
the residual frequency offset f. — fo.

Now, we introduce the Magnitude Weighed Tomographic
Proj ection’ (MWTP) of the probability density function (pdf)

(r, ¢; fe), namely:

;5 fe) =

R‘ID
(Afe) (et [
O NGOG

The MWTP gq()""f <) (), like an ordinary pdf, can be esti-

mated by subdividing the phase interval [0, 27) in K inter-
vals and evaluating the normalized area of gq()Avf «P) (o) in

the k-th phase interval. At this aim, let us define

P+2w/K

(A,fe.P)
2 ), 9 (p)dp  (6)

FASerP) (¥) d:efE )

In the limit K — oo, fA/<:P) (44;,) tends to gq()A’fe’P) (Yr)

where 1, &£ 27k /K. The CPS f(Af<:P) (1)) depends on the
constellation A and is typically a function built up by a fi-
nite set of pulses whose locations and width depend on the

2For SNR values high enough the shape of the Dirac pulses reduces to
the pdf of the imaginary component of the noise W n].

3See [3] for a closed form calculation of the MWTP of a generic QAM
signal.
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signal constellation and signal-to-noise power ratio, respec-
tively, and it is exploited in [3] to develop a blind phase
offset estimator for general QAM signals. For perfect com-
pensation f. = fy the CPS can be estimated as

N-1

N ef 1

AT () ST Y I e (YU [
n=0

K
d%ﬂjzE;WMWK@@Oﬁ—Qﬂk+1ﬂVK)
k=0,---,K—1

and, in the limit case of K — oo [3], is an unbiased estimate
of the MWTP géA*fﬂ’P) (¥r), since:

{f(A JeP) ( } ZE{‘y(fe ]| 2% (y(fe)[ })}
R [Pt
:ﬂAhmww7k:Q~wK7L
For fy # f. we have
{f(A fg,P) } ZE {‘Y(fo) |dk ( 0)[n})}

1 27r(k+1)/K

) » Dy g (2 6~ 20A(f — s Sy
n=0’27 O

N e

n=0

— fo)n)

Hence, the expected value of the function f(A:/0-F) (¢,) is
a temporal average of /N suitably shifted versions of the
perfectly compensated CPS, ie. f(A4/<F) (3,). Based on
this observation, we design a frequency estimator the fc PS
that best collapses the sample function f(A-f0-F) (1) to-
wards the perfectly compensated CPS, i.e. f(A /) (afy,),
by maximizing the peakness 75( fo) of the sample function
fAFo-P) (4). In formulas

chS = arg H}?X{ﬁ(fo)}
K-1 . (7)
U)o 37 IFAHP) () 1

k=0

The estimator in (7) is completely blind, since it is constel-
lation independent and doesn’t need any gain/SNR control.
Following the approach in [4], the maximization of the
peakness ’p(fo) of the sample function f(A-fo-P) (1) can
be performed in two steps, i.e. by first scanning the admis-
sible range of fo, i.e. [—1/8,1/8], with step Afy between
candidate frequencies to evaluate an intermediate coarse es-
timate fc, and then by interpolating the estimate fc around



the maximum to obtain the fine estimate ffme. Here, we
adopt a parabolic approximation for the peakness function
around its maximum, yielding the following formula for the
fine estimate fyinc:

_ 75(fc + AfOA) _A 75(fc - AfO)A _
P(fe+ Afo) +P(fe — Afo) — 2P(fe)

The parabolic approximation captures the local peakness
variations and allows the estimator performance analysis to
be carried out in closed form [4].

A ~ 1
ffine = fc+§Af0
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Fig. 1. MSE vs. SNR for 32-QAM constellation (N = 2000,L =
512, P = 1) ; CPS-based estimator (numerical: black square, theoretical:

black solid line), NLS estimator in [1] (numerical: gray triangle, theoreti-
cal: gray solid line), 4*" order estimator in [1] (diamond) and MCRB [5]
(dashed line).

4. ANALYTICAL PERFORMANCE EVALUATION
In evaluating the accuracy of the estimator (3), we observe
that two error components appear. The first component oc-
curs when the coarse estimate f. is not correct, in the sense
that it does not maximize the expected value of the peakness
75(kA f) over the index k. The second error component is
due to the sample peakness estimation error and to the misfit
of the parabolic approximation around its maximum, and def-
initely limits the estimator accuracy. Numerical simulations
show that, for a large range of SNR values, the coarse esti-
mate is correct, and the first error component is zero. Hence,
following the approach indicated in [4], the bias and the vari-
ance of ffi,e can be analytically evaluated as a function of
the peakness mean, variance and covariances. Let us denote

def P(fo)— {75( fo)} and let us set the following posi-
tons X = E{P(f.+ AN}, Y =B{P(f.—AN}. 2 =
E {ﬁ(fc)} andc = X—Y,d = X—2Z+Y. Then, resorting
to the following first-order approximation of (3):

fc*ffine%%(dJr

d+c 2c
g “E )
d2 fe—Af — 42 fe

£ g
gz letAs
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we have obtained the following result:

bias(ffme) A2fd23 | (Y = Z) Var (75(fc—|—Af))

+(Z — X) Var (P(f.—Af))—2 (X =Y) Var (P(f.))
— (Y +2Z = 3X) Cov (P(f. — Af), P(f.))

+ (Y +2Z —3X) Cov (P(£.), P(f. + AF))

— (X =Y) Cov (P(fo+ Af), P(fe = AF))| = bym

where the term by, = (fe— fc)+Af/2-c/d accounts for the
parabolic misfit [4]. As long as the variance of the estimator

ffine is concerned, we have

aVar(fﬁne)dzef lirn N - Var (ffme)

7Af2 (dd )Var P(fe + Af))
(dtc> Var (P
_< d402>COV(77(fC+Af) P(fe —Af))

+ <2dcd%2c> Cov (P(f.), P(f. — Af))

any+ (%) var b

+ (2dcd> Cov (P(fe + AF), P(£2)]

Now we derive the mean, variance and covariances of the
sample peakness. Let us denote f};" (k] = fASP) ()
and let us define the zero mean random perturbation e/0 [k] =

FAFoP) () — };" [k]. Tt follows that the peakness function
can be written as:

K-1

o) = 5 > (FB 1+ P R)
k=0
K—-1

& 2 (e

k=0

o Aff R k] + 610 K2 P H]?)

where we have discarded the terms O(e3). With this po-
sition, the moments of the peakness can be expressed as a
function of the expected value f}c,‘) [k] and of the moments
of the variates e/°[k]. Let us now introduce the notations

{1}

e g’[khka defE{( Toka])” (P lka])"},
o) s )2 { () ().
The first and second order moments of the peakness are
straightforwardly given by

K-1

BP0} = 5 > (7B + 655 k7 miP 1)

k=0
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Fig. 2. MSE vs. SNR for 128-512 QAM constellation (N = 2000, L = 512, P = 1) ; CPS-based estimator (numerical: black square, theoretical: black
solid line), NLS estimator in [1] (numerical: gray triangle, theoretical: gray solid line), 4" order estimator in [1] (diamond) and MCRB [5] (dashed line).

E{P(fo)*} = Z Z_:

(fsz[kl]“ £k + 675 la]® £ [ka)? m2 [k
6D ko)
S0 ey, ko] 4+ 368 [a]? £ a]2 m [k, k2]>
K—1K-1
2 20 2 hrh
kl Ok)z 0
L a2 o) + 6 15 o] £ ) *m ) [
B ki ) [k ko)

P ka)? mE) (k] + 16 £ [ka)® fE9 ko)

E{P(fo) P

+6./ (k1]
+16 £ [k1]?

361 (k)2 ff [R5 %) [k, k2]>
where
1
2
m Y [k] =Nz E (ff° k— 60y — f£°[k—9£f°)]2)

@) 1 f
mfo »J N2 Z (f r g(fo)]

Pl — 0] 21 - 0)))

1,1
m(fo,f)l[k 7l N2 Z (f20 [k~ Qfo)] 5k(ﬂ L(fo—f1)n)

~ Bk =0 g1 - 05))

Finally, in the limit in which the sample error is asymp-
totically (large N) described by a normal distribution, we
have:

2,2 2 2 11 .
mgco )[k: .7] mgco) [kf} mgcu) []] + 2 (m(fo )[k;7 ]D

2,2 2 2 1) \2
mi k3] = mi) (k] m )+ 2(mi ) [k j])

Let us remark that we used the approximation f(4:/0:7) (4,)
g 0P (4. for the numerical evaluation of the above re-
ported first and second order moments of the peakness.

5. NUMERICAL EXPERIMENTS

Here, we present numerical results assessing the theoretical
and experimental performance of the estimator introduced in
Sect.3. Each experiment consists of 1000 Monte Carlo trials,
each one with sample size N = 2000 and Afy = 1.4-1075;
the value assumed for the frequency offset to be estimated
is fo = 0.05+ Afy/4. The experimental and theoretical

Mean Square Error (MSE) of the frequency estimator fo PS
introduced in Sect.3 versus SNR is shown in Figs.1 and 2 for
32-QAM, 128-QAM and 512-QAM. In Figs.1 - 2 we observe
a good agreement between the analytical and the numerical
performance for medium to high SNR. For comparison sake,
we report also the results obtained using the optimal NLS
estimator, requiring the knowledge of both the gain and the
SNR, and the fourth order estimator in [1]. The CPS based
estimator and the fourth order estimator in [1] are completely
blind. The CPS based estimator outperforms the optimal
estimator in [1] at high SNR while drastically outperforms
the fourth order estimator in[1] at any SNR.
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