
ON STRUCTURED TOTAL LEAST-SQUARES FOR BLIND IDENTIFICATION OF
MULTICHANNEL FIR FILTERS

Muhammad Z. Ikram

DSP Solutions R&D Center
Texas Instruments, Inc., Dallas, TX 75243

mzi@ti.com

ABSTRACT

Structured total least-squares (STLS) provides a nice frame-
work for approximating a full-rank af nely-structured ma-
trix with a rank-de cient matrix having the same af ne struc-
ture. In this paper, we investigate the use of STLS method
for blind identi cation of multiple FIR channels driven by
an unknown deterministic input. First, we exploit the block-
Hankel af ne structure of the data matrix, which motivates
the use of STLS-based methods. Then, we derive an itera-
tive non-linear solution to the unknown channel parameters
by using a generalized form of singular value decomposition.
We carry out extensive numerical simulations to compare the
performance of the proposed method against the well-known
least-squares (LS) method, where the af ne structure of the
date matrix is overlooked. These results reveal that the STLS
based method outperforms the LS method for ill-conditioned
as well as well-conditioned channels over a wide range of
SNR.

Index Terms— Blind Channel Identi cation, Structured
Total Least Squares, Hankel Matrix

1. INTRODUCTION

Blind channel identi cation (BCI) refers to the estimation of
channel impulse response from its output only. Over the past
few years, this area of research has received immense practi-
cal interest (see [1], and the references therein). The primary
reason for this is the fact that it does not require a training
sequence to equalize the channel, thereby saving the chan-
nel capacity, which is severely limited in mobile communica-
tions. Some earlier work in this direction focused on using
higher-order statistics (HOS), which require the use of long
data records for reliable estimates. This limits their usage
in mobile communications where the channel has to be esti-
mated within a short period of time.
Blind estimation of FIR channels using only second-order

statistics (SOS) is rst attributed to Tong et al. who showed
that by sampling the received data at a rate higher than the
baud (symbol) rate, SOS can suf ce to estimate the channel
impulse response up to a constant [2]. Ever since the publi-
cation of [2], many different statistical and deterministic ap-
proaches for BCI have been proposed, each having its own
relative merits and demerits [1].

In this work, we consider BCIwithout assuming any knowl-
edge of the input signal statistics. This is more realistic in
mobile communications, where a short data sequencemay not
yield reliable statistics [8]. A deterministic least-squares (LS)
method was proposed by Xu et al. [3], which is based on
the cross-relation property between the outputs of two chan-
nels fed by the same input. A striking feature of the LS
method is that for an arbitrary input and in the absence of
noise, it yields exact channel estimates. In the presence of
noise, the channel parameter estimates are obtained by solv-
ing an over-determined set of linear equations which trans-
lates to obtaining a reduced rank solution of a block-Hankel
structured matrix. Unfortunately, in the presence of noise,
the LS method fails to associate this speci c structure with
the reduced rank matrix. In this contribution, we constrain
the LS solution so that the reduced rank data matrix also as-
sumes a block-Hankel structure, as desired. This constrained
optimization problem is referred to as structured total least-
squares (STLS) [4], whose solution is based on solving a
set of non-linear equations. We present a BCI method using
STLS where we follow an iterative approach of [4] to esti-
mate the channel parameters. To illustrate the ef cacy of our
proposed method, we carry out numerical simulations, which
compares the performance of the LS and the proposed STLS
based blind channel estimation methods.

2. PROBLEM FORMULATION

Consider a P -channel FIR system having impulse responses
hi(n), i = 1, . . . , P , driven by a common input s(n). The
outputs of this multichannel system are given by

yi(n) =
L∑

l=0

hi(l)s(n − l) + ni(n), i = 1, . . . , P, (1)

whereL is the order ofP FIR lters, i.e., hi(z) =
∑L

l=0 hi(l)z
−l,

which is assumed to be known. Note that the P -channel
model can be obtained either by using P physical receivers
or by oversampling the single channel output at P times the
baud rate [1]. Our objective in this paper is to estimate the
channels hi(n) from N output samples yi(n) of P channels
i = 1, . . . , P . We assume that: A(1) the P FIR lters are
coprime; i.e., they do not share any common zeros; A(2) the
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number of modes in the input sequence is L+1, and A(3) the
additive noise ni(n) is stationary and white.
For a pair of noise-free outputs of any two sensors i and

j, we can write

xi(n) = hi(n) ∗ s(n), xj(n) = hj(n) ∗ s(n),

which allows us to write [3]

hi(n) ∗ xj(n) = hj(n) ∗ xi(n).

In a compact matrix notation

(
Xi −Xj

) (
hj

hi

)
= 0, (2)

where hm = [hm(L), . . . , hm(0)]T ,

Xm =

⎛⎜⎜⎜⎝
xm(L) xm(L + 1) . . . xm(2L)

xm(L + 1) xm(L + 2) . . . xm(2L + 1)
...

...
. . .

...
xm(N − L) xm(N − L + 1) . . . xm(N)

⎞⎟⎟⎟⎠ ,

(3)

and (·)T denotes the transpose. The cross-relation in (2) is
the main idea behind the LS approach of [3] and the STLS
approach proposed in this paper, as will be shown in the next
two sections.

3. MOTIVATION FOR STLS BASED APPROACH

The cross-relation of (2) can straightforwardly be expressed
for each (i, j) pair of channels, which when combined to-
gether gives ⎛⎜⎜⎜⎝

X1

X2

...
XP−1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

h1

h2

...
hP

⎞⎟⎟⎟⎠ = 0 (4)

or simply Xh = 0, where X is of dimension (N − 2L +

1)P (P−1)
2 × (L + 1)P and h is a (L + 1)P × 1 vector. Each

constituent block of X is of dimension (N − 2L + 1)(P −
i) × (L + 1)P and is given by

Xi =

⎛⎜⎝0 . . . 0 Xi+1 −Xi 0 0
...

... 0
. . . 0

0 . . . 0 XP 0 . . . −Xi

⎞⎟⎠ . (5)

With the identi ability conditions (A1)–(A3) satis ed, the
matrixX, also sometimes referred to as the data selection ma-
trix, is rank de cient by one, and h is in its null space. Given
a noisy data matrixY, an estimate of the channel parameters
can then be obtained by nding the low-rank approximation
Ŷ of the noisy data selection matrix Y. In other words, we
seek a LS solution

min ‖Y − Ŷ‖2 subject to

{
Ŷh = 0
hT h = 1

, (6)

where ‖ · ‖ is the Frobenius norm. The rst constraint in (6)
guarantees the rank-de ciency of Ŷ whereas the second con-
straint avoids the trivial solution h = 0. Using the Eckart-
Young-Mirsky theorem, one can easily show that the LS so-
lution can be obtained from the dyadic singular value decom-
position (SVD) ofY [5], i.e.,

Ŷ = Y − uσvT and h = v,

where u and v are the left and right singular vectors of Y

corresponding to its smallest singular value σ.
It is interesting to note that the matrix Y has a unique

block-Hankel structure associated with it. On the other hand,
its low-rank approximant Ŷ, obtained using (6), is not guar-
anteed to have the same structure. In the BCI problem, the
matrix Ŷ is desired to have a block-Hankel structure as in (4).
Motivated by this fact, we now investigate and search for an
estimate Ŷ which is guaranteed to have the same structure as
Y. In this case, the solution belongs to a set of matrices S,
which satis es the following property

S =Ŷ given

{
Ŷh = 0

Ŷ has the same block Hankel structure asY.

By adding another constraint, the optimization problem
can no longer be solved simply using the SVD. In fact, as will
be shown in the next section, a non-linear estimation proce-
dure is required to solve this problem. The use of STLS for
blind channel identi cation was indicated by De Moor in [6].
No formal theoretical solution and numerical performance de-
tails were, however, given there.

4. PROPOSED STLS BASED BCI

For the sake of simplicity, we consider a 2-channel case, i.e.,
P = 2. The matrix X, therefore, consists of only two row
sub-blocksX2 and −X1, and is a function of 2(N − L + 1)
data values xi(L), . . . , xi(N) for i = 1, 2. In terms of a set of
xed matricesBi, i = 0, . . . , 2N − 2L + 1, this af ne matrix
can be expressed as

B(x) = X = x2(L)B0+x2(L+1)B1+. . .+x2(N)BN−L

+ x1(L)BN−L+1 + . . . + x1(N)B2N−2L+1, (7)

where Bi (i = 0, . . . , N − L + 1) has 1 along the (i + 1)th
anti-diagonal of the left (N − 2L + 1) × (L + 1) block and
zeros elsewhere. Similarly, Bi (i = N − L + 2, . . . , 2N −
2L + 1) has -1 along the (i + 1)th anti-diagonal of the right
(N − 2L + 1) × (L + 1) block and zeros elsewhere. For
example,

B1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 . . . 0
1 0 . . . 0
...
...
. . .

...
0 0 . . . 0︸ ︷︷ ︸

(L+1)

0 0 . . . 0
0 0 . . . 0
...
...
. . .

...
0 0 . . . 0︸ ︷︷ ︸

(L+1)

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(N−2L+1).
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Based on the above formulation and given the noisy data
yi(n), we de ne a STLS criteria to estimate the block-Hankel
structured low-rank matrixB(ŷ), which consists of minimiz-
ing the following cost function

min
by1(i),by2(i),h

N∑
i=L

{
[y1(i) − ŷ1(i)]

2
+ [y2(i) − ŷ2(i)]

2
}

subject to
{

B(ŷ)h = 0

hT h = 1
. (8)

Using Lagrange’s multipliers, a solution to (8) is obtained
by nding the vectors u and v corresponding to the smallest
scalar σ that satis es [4]

Yv = Dvuσ, uT Dvu = 1, (9)

Ytu = Duvσ, vT Duv = 1 (10)

where Dv and Dv are symmetric positive de nite matrices
de ned as

N−L+1∑
i=1

BT
i (uT Biv)u = Duv,

N−L+1∑
i=1

Bi(u
T Biv)v = Dvu.

(11)
The channel estimates are given by ĥ = v/‖v‖. Note

that the non-linearity of (9)–(10) stems from the dependence
of Du and Dv on the square of the singular vectors u and v

respectively. This makes the analytical solution to (9)–(10)
rather dif cult to compute. Independent research efforts due
to Abatzoglou and Mendel [7] and De Moor [4] led to iter-
ative solutions to this non-linear optimization problem. The
method in [4], however, has shown to posses better conver-
gence properties and will, therefore, be used in our BCI setup.
The idea is to treatDu andDv independent ofu and v in each
iteration, and compute the QR decomposition ofY, i.e.,

Y =
(
Q1 Q2

) (
R

0

)
. (12)

whereQ1 is (N −2L+1)×2(L+1),Q2 is (N −2L+1)×
(N−1), andR is a 2(L+1)×2(L+1)matrix. Equations (9)–
(10) can then be manipulated to obtain the following upper
triangular form⎛⎝ RT 0 0

QT
2 DvQ1 QT

2 DvQ2 0

QT
1 DvQ1σ QT

1 DvQ2σ −R

⎞⎠ ⎛⎝ z

w

v

⎞⎠ =

⎛⎝Duvσ
0

0

⎞⎠ ,

(13)
where u = Q1z + Q2w for certain arbitrary vectors z and
w of lengths 2(L + 1) and (N − 1) respectively. This set of
equations allows one to ef ciently compute u and v, which
are then used to updateDu andDv for the next iteration.
In summary, the proposed STLS based BCI algorithm can

be summarized as follows:

1. Given the noisy data yi(n), n = L, . . . , N for i = 1, 2,
construct the block-Hankel matrix Y of the form de-
ned in (4).

2. Compute the QR decomposition ofY.

Initialization:

3. Compute the eigenvector corresponding to the smallest
eigenvalue of Y as an initial choice for u(0) and v(0).
Note that this choice gives the channel estimates in the
LS sense.

4. Choose normalizedDu
(0) andDv

(0), such that

v(0)T
Du

(0)v(0) = u(0)T
Dv

(0)u(0) = 1.

For k = 1, . . .:

5. z(k) = R−T Du
(k−1)v(k−1)σ(k−1)

6. ω(k) = −
(
QT

2 Dv
(k−1)Q2

)
−1 (

QT
2 Dv

(k−1)Q1

)
z(k)

7. u(k) = Q1z
(k) + Q2w

(k)

8. v(k) = R−1QT
1 Dv

(k−1)u(k), v(k) = v(k)/‖v(k)‖

9. γ(k) =
(
u(k)T

Dv
(k)

u(k)
)1/4

10. u(k) = u(k)/γ(k), v(k) = v(k)/γ(k)

11. Du
(k) = Du

(k)/(γ(k))2, Dv
(k) = Dv

(k)/(γ(k))2

12. σ(k) = u(k)T
Yv(k)

13. Convergence: If ‖v(k)−v(k−1)‖ ≤ ε (a pre-determined
scalar), then stop. Otherwise, repeat step 5–13.

At convergence (k = K), the structured low rank matrix
Ŷ can be estimated using

B(ŷ) =

N−L∑
i=0

Biŷ
(K)
2 (L+i)+

2N−2L+1∑
i=N−L+1

Biŷ
(K)
1 (2L−N−1+i),

(14)
where ŷ

(K)
1 (L + i) = y1(L + i) − u(K)T Biv

(K)σ(K) and
ŷ
(K)
2 (L + i) = y2(L + i) − u(K)T BN−L+1+iv

(K)σ(K) for
i = 0, . . . , N −L. Finally, the STLS channel estimates h are
obtained from the null space ofB(ŷ).

5. SIMULATION RESULTS

In this section, we investigate the performance of the pro-
posed STLS based method and compare it against the LS
method. To study the effect of ill-conditioned channels, we
consider a two-channel second-order FIR model (L = 2,
P = 2) proposed in [8]

hi = [1 − 2cos(θi) 1]T , i = 1, 2,

where θ1 = θ, θ2 = θ1 + δ, and δ is the parameter that
controls the angular separation between the zeros of the two
channels. When δ is small, the channels are considered ill-
conditioned. We consider the input s(n) as an i.i.d. sequence
of (+1,−1) having unit variance σ2

s = 1. The output data
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consist ofN = 100 samples. The outputs of the two channels
are corrupted by additive white Gaussian noise of variance
σ2

n. The signal to noise ratio in dB is de ned using

SNR = 10 log10

(
σ2

s‖h‖
2

Mσ2
n

)
and the performance of STLS and LS methods is evaluated
using the mean squared error in dB

MSE = 20 log10

⎛⎝ 1

‖h‖

√√√√ 1

Nr

Nr∑
i=1

‖ĥi − h‖2

⎞⎠ ,

where ĥi is the i-th estimate of channel parameters andNr =
100 is the number of independent Monte-Carlo runs. To alle-
viate the effect of scaling in the estimates, the rst element of
ĥi is normalized to be one.
We rst considered well-conditioned channels for which

θ = π/10 and δ = π. In this case, the performance of the LS
and STLS methods against the SNR is shown in Fig. 1.
In the next experiment, we computed the MSE for ill-

conditioned channels (θ = π/10, δ = π/5) at different SNR
levels. The performance of both the methods is shown in
Fig. 2. As we see that by preserving the block-Hankel struc-
ture of the data matrix in its low rank approximant, better
channel estimates are obtained in terms of MSE, thus sup-
porting our theoretical claims.
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Fig. 1. Performance comparison of LS and STLSmethods for
well-conditioned channels (δ = π) with data size N = 100.

For ill-conditioned channels, the STLSmethod also proves
to be more data ef cient as shown in Fig. 3, where its perfor-
mance is compared against LS method for different values of
data size N at an SNR of 5 dB.

6. CONCLUSIONS

We proposed an algorithm for blind estimation of multiple
FIR channels driven by an arbitrary unknown input. Themethod
uses the cross-relation approach and exploits the speci c block-
Hankel structure of the data selection matrix. A decompo-
sition of this matrix in terms of an af ne set of matrices is
de ned and the channel estimates are obtained by solving a
non-linear constrained optimization problem. Simulation re-
sults show the improved performance of the proposed method
over the LS method.
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Fig. 2. Performance comparison of LS and STLS methods for
ill-conditioned channels (δ = π/5) with data size N = 100.
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Fig. 3. Performance comparison of LS and STLS methods for
ill-conditioned channels (δ = π/5) and different data sizesN
at an SNR of 5 dB.
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