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ABSTRACT
The demand for high data rate reliable communications poses great
challenges to the next generation wireless systems in highly dy-
namic mobile environments. In this paper, we investigate the joint
maximum-likelihood (ML) channel estimation and signal detection
problem for single-input multiple-output (SIMO) wireless systems
with general modulation constellations and propose an efficient se-
quential decoder for finding the exact joint ML solution. Unlike
other known methods, the new decoder can even efficiently find
the joint ML solution under high spectral efficiency non-constant-
modulus modulation constellations. In particular, the new algorithm
does not need such preprocessing steps as Cholesky or QR decom-
position in the traditional sphere decoders for joint ML channel es-
timation and data detection. The elimination of such preprocessing
not only reduces the number of floating point computations, but also
will potentially lead to smaller size and power consumption in VLSI
implementations while providing better numerical stability.

Index Terms— blind ML detection, decoding complexity,
SIMO, maximum-likelihood,sphere decoder

1. INTRODUCTION

The goal of achieving high-speed reliable data transmission over
highly dynamic wireless medium has generated a lot of research
activities in the communications and signal processing community.
One of the largest challenges arising in wireless communications is
how to deal with the wireless fading phenomenon, where the wire-
less channels may vary over time. In wireless communications, one
often assumes knowledge of the channel coefficients at the receiver
side by channel estimation from training sequences, but sending
training symbols will sacrifice a fraction of the transmission rate. In
wireless mobile systems, the channels may even change so rapidly
that training and channel tracking will become infeasible. One pos-
sible solution is to differentially encode the transmitted data and
thus eliminate the need for channel knowledge. Another solution is
to do blind or semi-blind detection over the time-varying wireless
channels, which has been shown to enhance the system performance
considerably and often perform better than differential modulations
[1, 2, 3, 4, 5, 6].

We here consider the problem of joint ML channel estimation
and data detection for SIMO systems, where the transmitter uses
only one antenna but the receiver employs multiple antennas. This
problem was shown to be an integer least squares problem for SIMO
systems using constant modulus constellations in [2], where the
sphere decoder was originally proposed for finding the joint ML
solution. In [4], similar ideas of sphere decoders were used for blind
detection of orthogonal space-time block codes (OSTBC). There
the sphere decoders and semidefinite relaxation approach (SDR) are
shown to be two comparable blind detection methods for OSTBC

in terms of performance and complexity although SDR is only an
approximation method. Again, only BPSK and QPSK modulations
are admissible in sphere decoders and SDR methods in [4]. In [9],
the authors showed that the joint optimal estimation and detection
problem admits certain polynomial algorithm for constant energy
constellations.

Despite all these developments, there are two limitations on the
algorithms for blind ML detection of SIMO systems in the litera-
ture. Firstly, these algorithms are only for constant-modulus modu-
lation of small alphabet sizes. In fact, the problem of blind ML de-
tection for non-constant-modulus modulation constellation can not
be transformed into a standard integer least squares problem as in
[2] [4], which makes sphere decoders inapplicable to the blind ML
detection. However, in order to achieve high spectral efficiency,
high-order modulation constellations are of great interest, especially
for SIMO wireless systems where receive diversity enables SNR
high enough to support these high-order constellations. To the best
of our knowledge, there are no working algorithms with numeri-
cal results reported in the literature for blind exact ML detection in
high-dimensional SIMO wireless systems employing non-constant-
modulus constellations. (A conceptual blind exact ML decoder for
non-constant-modulus constellations was discussed without numer-
ical results in [10] by the first author of the current paper. Although
that method avoids exhaustive search, it still does not work effi-
ciently for such high-dimensional problems considered in this pa-
per.) Secondly, for the sphere decoders in [3] and [4], such prepro-
cessing steps as Cholesky (or QR) decomposition are needed, which
add greatly to the whole detection complexity. In fact, for VLSI im-
plementations, similar preprocessing requirements may prove to be
a significant hindrance to the feasibility of sphere decoders in terms
of area and power consumption[7] [8]. Also, Cholesky or QR de-
composition is numerically undesirable for VLSI implementations
since it requires a lot of divisions and square root operations[7][8].

In this paper, we try to resolve these two limitations by propos-
ing a new optimal joint channel estimation and signal detection algo-
rithm which works efficiently, in some cases more efficient than tra-
ditional sphere decoders ( and also approximate methods like SDR).
The new algorithm works for general constellations and does not
need either Cholesky or QR decomposition. Analysis shows that for
any data length, if the SNR is high enough, the average complex-
ity of the algorithm will approach a constant times the data length
while achieving the optimal performance. Simulation results verify
the efficiency and effectiveness of the new algorithm.

2. THE JOINT CHANNEL ESTIMATION AND SIGNAL
DETECTION PROBLEM

Let us consider a SIMO system with N receive antennas and let T be
the length of a data packet during which the channel remains static.
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Then the channel output is written as

X = hs∗ + W, (1)

where h ∈ CN×1 is the SIMO channel vector, s∗ ∈ C1×T is the
transmitted symbol sequence, and W ∈ CN×T is an additive noise
matrix whose elements are assumed to be i.i.d. complex Gaussian
random variables. And we also assume the entries of s∗ are i.i.d.
symbols from a certain constellation Ω (like QPSK or 16-QAM) of
unit expected energy, i.e.,

E(|sk|2) = 1, k = 1, 2, ..., T. (2)

We assume a deterministic unknown channel model for h where h is
a deterministic unknown and no priori information about h is known
[1][4]. This deterministic unknown channel model is preferred in
some scenarios than assuming an i.i.d. Rayleigh distributed channel
gains since sometimes wireless channels obey Rician fading, Nak-
agami or other fading statistics and there are possibly correlations
between channel gains across the N receive antennas. In fact, if we
assume that h is a complex Gaussian distributed, the joint ML chan-
nel estimation and data detection problem can still be transformed to
a special case where the techniques for this deterministic unknown
channel model still apply.

Under these assumptions, the problem of joint ML channel es-
timation and data detection for SIMO channels is transformed into
the following optimization problem

min
h,s∗∈ΩT

‖X − hs∗‖2, (3)

where ΩT denotes the the set of T -dimensional signal vector. In
fact for any given transmitted symbol s∗, the channel vector h that
minimizes (3) can be shown to be

ĥ = Xs(s∗s)−1 = Xs/‖s‖2, (4)

Substituting (4) into (3), we get

‖X(I − 1

‖s‖2
ss∗)

︸ ︷︷ ︸
=Ps

‖2 = tr(XPsX
∗) = tr(XX∗)− 1

‖s‖2
s∗X∗Xs,

(5)
If the modulation constellation is of constant modulus (such as
QPSK), the minimization of (5) over s is equivalent to solving the
following problem:

max
s∈ΩT

s∗X∗Xs, (6)

If ρ is larger than the maximum eigenvalue of X∗X , (6) is equiv-
alent to the following minimization problem (for constant modulus
constellation)

min
s∈ΩT

s∗(ρI − X∗X)s, (7)

The optimization problem in (7) is an integer least-squares prob-
lem and the sphere decoding algorithm can solve it much more effi-
ciently than exhaustive search. Actually, the sphere decoder chooses
a search radius r and restricts the search to the hypersphere.

s∗(ρI − X∗X)s ≤ r2. (8)

The readers are referred to [2] for details of sphere decoding pro-
cedures. However, traditional sphere decoding algorithm needs to do
the Cholesky factorization of the matrix (ρI − X∗X) first in order
to find the closest lattice point. This will introduce computational
complexity in the order of O(T 2N),which is not desirable for this
application. Also, as seen from (5), for non-constant-modulus con-
stellations, the blind ML detection problem will be different from
(6) and thus can not be changed to integer least squares problems,
preventing the application of sphere decoders.

3. SOLVING THE JOINT PROBLEM WITH THE NEW
ALGORITHM

We start by considering the original problem given in (3). For X , s∗

and W , denote the parts corresponding to their first i(1 ≤ i ≤ T )
time indices as X(i), s∗(i) and W(i) while Xi, s

∗
i and Wi will be

reserved for their part corresponding to exactly the i-th time index.
Let us consider a partial data sequence s∗(i) up to the time index

i and define Ms∗(i)
as

Ms∗(i)
= tr(X(i)X

∗
(i)) − 1

‖s∗(i)‖2
s∗(i)X

∗
(i)X(i)s(i), (9)

Lemma 1 Let R be the optimal value for the optimization problem
in (3). If Ms∗(i)

> R, then s∗(i) can not be the first i symbols of the
ML solution ŝ∗ to (3).

Proof: Suppose s∗(i) = ŝ∗(i) and we denote the optimal channel gains

corresponding to ŝ∗ as ĥ. Then

R = ‖X(i) − ĥŝ∗(i)‖2 +

T∑
j=i+1

‖Xj − ĥŝ∗j‖2

≥ min
h

‖X(i) − hŝ∗(i)‖2 +

T∑
j=i+1

‖Xj − ĥŝ∗j‖2

≥ min
h

‖X(i) − hŝ∗(i)‖2 = Mŝ∗(i)
= Ms∗(i)

, (10)

where the last two equalities are due to (5). But Ms∗(i)
is larger than

R, which forms a contradiction. �
From Lemma 1, if the value R of the optimization problem (3)

can be estimated, we can restrict the search of the blind ML solu-
tion ŝ∗ to the offsprings of those partial sequences s∗(i) which satisfy
Ms∗(i)

< R. This motivates our proposed depth-first search algo-

rithm for finding the blind ML solution. In the following algorithm
description, we denote the k-th constellation point in the modulation
constellation Ω as Ω(k).
Exact Blind ML Detection Algorithm
Input: the received channel output X , the search radius r, the mod-
ulation constellation Ω and a 1 × T index vector I .

1. Set i = 1, ri = r, I(i) = 1 and set s∗i = Ω(I(i)).

2. (Computing the bounds) Compute the metric Ms∗(i)
.If Ms∗(i)

>

r, go to 3; else, go to 4;

3. (Backtracking) Find the largest 1 ≤ j ≤ i such that I(j) <
|Ω|. If there exists such j, set i = j and go to 5; else go to 6.

4. If i = T , store current s∗(T ), update r = Ms∗(T )
and go to 3;

else set i = i + 1, I(i) = 1 and s∗i = Ω(I(i)), go to 2.

5. Set I(i) = I(i) + 1 and s∗i = Ω(I(i)). Go to 2.

6. If any sequence s∗(T ) is ever found in Step 4, output the latest
stored full-length sequence as ML solution; otherwise, double
r and go to 1.

3.1. Choice of the initial radius r

The structure of the new blind ML algorithm easily suggests a prob-
abilistic choice of the search radius. We know that ‖W‖2 is chi-
square distributed with 2NT degrees of freedom, it is natural to
choose the radius r such that P (‖W‖2 > r2) ≤ 1 − ε. Since the
solution R to the optimization problem in (3) is sure to be smaller
than ‖W‖2, we will guarantee finding the blind ML data sequence
with probability at least 1 − ε under this initial radius.
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3.2. Constant update complexity per tree node w.r.t. T

As we can see, the new joint ML decoder almost only involves
additions and multiplications in the decoding process. The main
source of complexity comes from Step 2 where the metric Ms∗(i)

is computed, which at first sight needs computational efforts O(T 2).
Instead, we propose to efficiently update Ms∗(i)

at each tree node

with constant computational costs (as a linear function of N ) by
propagating the value Ai, which is defined as Ai =

∑i
j=1 Xjsj .

Then we can update Ai+1 sequentially as Ai+1 = Ai + Xi+1si+1

and compute Ms∗(i+1)
= tr(X(i+1)X

∗
(i+1)) − ‖Ai+1‖2. Note that

tr(X(i)X
∗
(i)), namely the energy of X(i) can be sequentially pre-

computed at the beginning of the algorithm and used in the whole
search. So the computational cost of updating each tree node’s met-
ric does not depend on the search dimension T .

4. COMPUTATIONAL COMPLEXITY

In this section we provide an upper bound on the expected value
of the number of arithmetic operations required by our algorithm.
Given that the number of the arithmetic operations performed per
each node of the search tree is roughly a constant multiple of N , it
suffices to find the expected number of the nodes inside the search
sphere, which further reduces to finding the expected number of the
nodes per each level remaining inside the search sphere. To simplify
analysis, we assume i.i.d. complex Gaussian channel gains as

√
ρ
c
h̄,

where ρ is the SNR, h̄ is a vector with i.i.d. complex Gaussian ran-
dom variables of unit variance and c is the average energy of each
component of the transmitted vector ŝ. Let the expected number of
the nodes at i-th level of the search tree be Ci. Recall that every
node in the tree has a sequence of fixed symbols which leads to that
node. Let s̄(i) �= ŝ(i) be the sequence of symbols leading to the node
of i-th level which has the highest probability of being in the search
sphere. Let Pi be the probability that this node is in the sphere. Then
it is easy to see that

Ci ≤ 1 + (qi − 1)Pi (11)

where q denotes how many symbols we have in our constellation.
From (11) it clearly follows that establishing an upper bound on Pi

is sufficient to establish an upper bound on Ci.
From the description of our algorithm it follows that

Pi = Pr(||X(i)

(
I − s̄(i)s̄

∗
(i)

||s̄(i)||2
)
||2F ≤ r2)

where X(i) denotes the first i columns of the matrix X and r2 is the
squared value of the search radius. We can further write

Pi = Pr

(
Tr

(
X(i)(I − s̄(i)s̄

∗
(i)

||s̄(i)||2 )X∗
(i)

)
≤ r2

)
. (12)

Recall that

X(i) =

√
ρ

c
h̄ŝ∗(i) + W(i) (13)

where W(i) denotes first i columns of the matrix W . Combining
(12) and (13) we have

Pi = Pr

(
Tr

([
h̄∗

W ∗
(i)

]∗
Q(i)

[
h̄∗

W ∗
(i)

])
≤ r2

)
(14)

where

Q(i) =

[√
ρ
c
ŝ∗(i)

I

] (
I − s̄(i)s̄

∗
(i)

||s̄(i)||2
) [√

ρ
c
ŝ(i) I

]
.

Using the Chernoff bound the right hand side of (14) can be bounded
in the following way

Pi ≤ min
μ≥0

eμr2
Ee

−μTr

⎛
⎝

⎡
⎣ h̄∗

W ∗
(i)

⎤
⎦
∗

Q(i)

⎡
⎣ h̄∗

W ∗
(i)

⎤
⎦

⎞
⎠

= min
μ≥0

∫
e
−Tr

⎛
⎝

⎡
⎣ h̄∗

W ∗
(i)

⎤
⎦
∗
(I+μQ(i))

⎡
⎣ h̄∗

W ∗
(i)

⎤
⎦

⎞
⎠

dh̄∗dW ∗
(i)

e−μr2πN(i+1)

= min
μ≥0

eμr2

det(I + μQ(i))N
. (15)

It is straightforward to compute the determinant in the denominator

det(I + μQ(i)) = det(I + μ(I +
ρ

c
ŝ(i)ŝ

∗
(i))(I − s̄(i)s̄

∗
(i)

||s̄(i)||2 ))

= (1 + μ)i−2(1 + μ(1 + ρ||ŝ(i)||2(1 − |ŝ∗(i)s̄(i)|2
||ŝ(i)||2||s̄(i)||2 ))).

(16)

Combining (11), (15), and (16) we finally obtain an upper bound on
the expected complexity Ci

1 + min
μ≥0

(qi − 1)eμr2
(1 + μ)2−i

(1 + μ(1 + ρ||ŝ(i)||2(1 − |ŝ∗(i) s̄(i)|2
||ŝ(i)||2||s̄(i)||2 )))N

.

Setting μ = Ni
r2 and assuming s̄(i) �= ŝ(i)

lim
ρ→∞

Ci ≤ 1. (17)

This effectively means that for high enough SNR ρ only nodes cor-
responding to the sequence ŝ will be in the search sphere. Since we
perform O(N) arithmetic operations per each node of the search tree
the overall number of arithmetic operations will be O(NT ) which
is even significantly smaller than O(NT 2) required by the Cholesky
factorization part of the sphere decoder algorithm.

5. SIMULATION RESULTS

In this section, we give simulation results for the performance and
complexity of the new blind ML decoder. First, we investigates its
performance and complexity in a SIMO system employing BPSK
modulation where we assume N = 2 and T = 21. In the simula-
tions, the channel coefficients are generated as i.i.d complex Gaus-
sian random variables. To resolve the phase ambiguity, we embed
one known symbol in the data block. In Figure 1 shows that the
blind exact ML decoding performance obtained using the new blind
ML decoder. In Figure 2, we show the average number of floating-
point operations (FLOPS) for each detection block in the new algo-
rithm. In fact, when SNR is larger than 12dB, the new blind ML
decoder even requires less computations than the preprocessing part
of traditional sphere decoders[2]. In Figure 3, we give the BER per-
formance of our algorithm for a SIMO system employing 16-QAM
constellation where N = 6 and T = 11. It can be seen that the new
algorithm works very close to the known channel case, while having
huge performance advantage over iterative joint channel estimation
and data detection. In the iterative scheme, the least-squares(LS)
channel estimation was first initialized from the known embedded
symbol based on (4) and then the so-obtained channel estimation
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Fig. 1. BER Performance of SIMO BPSK System with N = 2 and

T = 21
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Fig. 2. Flop Counts for the New Blind ML Algorithm for BPSK

Modulation with N = 2 and T = 21

was used for coherent data detection. After that, the channel is re-
estimated by further using the detection decisions. The estimation-
detection procedure was iterated for a preimposed 20 times in the
simulations. Notice for each block, we need to test 24×10 ≈ 1012

hypothesis assumptions in exhaustive search for solving the problem
(3), which is almost infeasible for getting this result.

6. SUMMARY AND DISCUSSION

In this paper, we propose a low-complexity sequential decoder which
achieves the exact joint ML channel estimation and data detection
for SIMO wireless systems with high-order non-constant-modulus
modulation, where no other efficient exact methods (such as sphere
decoders) apply. It is shown analytically that as the SNR grows, the
average complexity of the new blind ML decoding algorithm will
approach a constant times the data length T . The simple structure of
the new decoder without Cholesky factorization will potentially lead
to smaller size and power consumption in its VLSI implementation
while providing better numerical stability.
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Fig. 3. Blind ML Decoding Performance for 16-QAM
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